Search results
(1 - 10 of 10)
- Title
- COMPARISON BETWEEN TWO CHITIN-PURIFIED PRO-DEATH PROTEINS IN MITOCHONDRIA TARGETING ANALYSIS
- Creator
- Yeap, Xin Yi
- Date
- 2011-04-19, 2011-05
- Description
-
Bax protein belongs to the Bcl-2 family. It is pro-apoptotic and the most common form is Bax α. When a cell receives death stimuli, Bax...
Show moreBax protein belongs to the Bcl-2 family. It is pro-apoptotic and the most common form is Bax α. When a cell receives death stimuli, Bax protein will oligomerize and target to mitochondria. Another isoform of Bax called Bax 2, which has lost exon 2 and has a frame shift mutation, is verified to be more potent in inducing apoptosis than Bax α. Here, we would like to understand more about Bax 2 mitochondria targeting ability compared to the more common Bax α form. We first set up a cell-free system which contained purified Bax protein and purified mitochondria. The mitochondrial binding protein was identified using fractionation and Western blot with Bax isoformspecific antibodies. Integration of Bax protein into the mitochondrial membrane was determined using the alkaline stripping method. The results suggest that the majority of Bax α targeted and integrated into the mitochondria membrane, while the majority of Bax 2 did not target to mitochondria in the cell-free system. This may suggest that Bax 2 might need additional help from certain cytosol components such as co-factors to target to mitochondria or that Bax 2 induces cell death through a mechanism other than mitochondrial targeting.
M.S. in Biology, May 2011
Show less
- Title
- Solid Fuel from Biomass for Cogeneration (Semester Unknown) IPRO 349: Solid Fuel from Biomass for Cogeneration IPRO 349 Midterm Report Sp08
- Creator
- Mikesell, Jonathan, Dlugosz, Anna, Heffernan, Joseph, James, Joshua, Vassi, Anna, Yap, Ying Bing, Yeap, Xin Yi, Chacko, Serena, Ruidera, Ryan, Stanfield, Terrance
- Date
- 2008, 2008-05
- Description
-
Renewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from...
Show moreRenewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from any naturally replenish-able source. This may include everything from solar to wind power, as well as biomass or biofuels. When considering biomass, or any (living or recently-dead) biological material, the chemical energy of the molecules is generally collected through combustion. The area of liquid fuels from biomass has especially gained much notoriety and support in recent years. This is due to the lower emissions and clean-burning nature of these fuels when compared to more traditional approaches, as well as the obvious renewable nature of the starting material. While vegetable oils or animal fats can be used as a replacement for diesel fuels, corn, switchgrass, or other grains are more widely used to produce ethanol for use in common combustion engines. Today’s E85 fuel is sold to customers with a chemical makeup of 85% ethanol and 15% gasoline. The use of solid biomass as a direct supplier of energy, however, is an area still left relatively unexplored in this growing field. In theory, and as preliminary research suggests, harvesting energy directly from solid biomass may be considerably more efficient than gathering it from its processed liquid counterpart. In fact, some studies suggest that the energy acquired from burning ethanol is up to 67% lower than is contained in the plant cellulose from which it is derived.[1] There are, however, several other factors besides energy projections to consider when looking at the economic and market viability of such an approach. For example, one of the main advantages of liquid fuels over solid is the ease of transportation and storage. Additionally, the feasibility of developing a whole new process of biomass collection and processing must be balanced with economic and logistical constraints. This includes not only careful analysis of energy and cost balances, but also in-depth examination of all equipment, manpower and environmental limitations. IPRO 349 was established to examine these (and many more) considerations in the viability of sold fuel from biomass. Specifically, we have narrowed the scope of our research to biomass derived from corn stover (leaves and stalk left in the ground after harvesting) within the state of Illinois. Illinois was chosen because it is currently the largest producer of corn in the nation.[2] Corn stover has been shown to have an energy content of 5,290 Btu/lb. wet, and 7,560 Btu/lb. dry.[2]With such an approach, it may be possible to utilize what would otherwise be considered “waste” to produce useable, renewable energy. For the purposes of this project, cogeneration, or the simultaneous generation of both electricity and useful heat will be examined.
Deliverables
Show less
- Title
- Solid Fuel from Biomass for Cogeneration (Semester Unknown) IPRO 349: Solid Fuel from Biomass for Cogeneration IPRO 349 Final Presentation Sp08
- Creator
- Mikesell, Jonathan, Dlugosz, Anna, Heffernan, Joseph, James, Joshua, Vassi, Anna, Yap, Ying Bing, Yeap, Xin Yi, Chacko, Serena, Ruidera, Ryan, Stanfield, Terrance
- Date
- 2008, 2008-05
- Description
-
Renewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from...
Show moreRenewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from any naturally replenish-able source. This may include everything from solar to wind power, as well as biomass or biofuels. When considering biomass, or any (living or recently-dead) biological material, the chemical energy of the molecules is generally collected through combustion. The area of liquid fuels from biomass has especially gained much notoriety and support in recent years. This is due to the lower emissions and clean-burning nature of these fuels when compared to more traditional approaches, as well as the obvious renewable nature of the starting material. While vegetable oils or animal fats can be used as a replacement for diesel fuels, corn, switchgrass, or other grains are more widely used to produce ethanol for use in common combustion engines. Today’s E85 fuel is sold to customers with a chemical makeup of 85% ethanol and 15% gasoline. The use of solid biomass as a direct supplier of energy, however, is an area still left relatively unexplored in this growing field. In theory, and as preliminary research suggests, harvesting energy directly from solid biomass may be considerably more efficient than gathering it from its processed liquid counterpart. In fact, some studies suggest that the energy acquired from burning ethanol is up to 67% lower than is contained in the plant cellulose from which it is derived.[1] There are, however, several other factors besides energy projections to consider when looking at the economic and market viability of such an approach. For example, one of the main advantages of liquid fuels over solid is the ease of transportation and storage. Additionally, the feasibility of developing a whole new process of biomass collection and processing must be balanced with economic and logistical constraints. This includes not only careful analysis of energy and cost balances, but also in-depth examination of all equipment, manpower and environmental limitations. IPRO 349 was established to examine these (and many more) considerations in the viability of sold fuel from biomass. Specifically, we have narrowed the scope of our research to biomass derived from corn stover (leaves and stalk left in the ground after harvesting) within the state of Illinois. Illinois was chosen because it is currently the largest producer of corn in the nation.[2] Corn stover has been shown to have an energy content of 5,290 Btu/lb. wet, and 7,560 Btu/lb. dry.[2]With such an approach, it may be possible to utilize what would otherwise be considered “waste” to produce useable, renewable energy. For the purposes of this project, cogeneration, or the simultaneous generation of both electricity and useful heat will be examined.
Deliverables
Show less
- Title
- Solid Fuel from Biomass for Cogeneration (Semester Unknown) IPRO 349
- Creator
- Mikesell, Jonathan, Dlugosz, Anna, Heffernan, Joseph, James, Joshua, Vassi, Anna, Yap, Ying Bing, Yeap, Xin Yi, Chacko, Serena, Ruidera, Ryan, Stanfield, Terrance
- Date
- 2008, 2008-05
- Description
-
Renewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from...
Show moreRenewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from any naturally replenish-able source. This may include everything from solar to wind power, as well as biomass or biofuels. When considering biomass, or any (living or recently-dead) biological material, the chemical energy of the molecules is generally collected through combustion. The area of liquid fuels from biomass has especially gained much notoriety and support in recent years. This is due to the lower emissions and clean-burning nature of these fuels when compared to more traditional approaches, as well as the obvious renewable nature of the starting material. While vegetable oils or animal fats can be used as a replacement for diesel fuels, corn, switchgrass, or other grains are more widely used to produce ethanol for use in common combustion engines. Today’s E85 fuel is sold to customers with a chemical makeup of 85% ethanol and 15% gasoline. The use of solid biomass as a direct supplier of energy, however, is an area still left relatively unexplored in this growing field. In theory, and as preliminary research suggests, harvesting energy directly from solid biomass may be considerably more efficient than gathering it from its processed liquid counterpart. In fact, some studies suggest that the energy acquired from burning ethanol is up to 67% lower than is contained in the plant cellulose from which it is derived.[1] There are, however, several other factors besides energy projections to consider when looking at the economic and market viability of such an approach. For example, one of the main advantages of liquid fuels over solid is the ease of transportation and storage. Additionally, the feasibility of developing a whole new process of biomass collection and processing must be balanced with economic and logistical constraints. This includes not only careful analysis of energy and cost balances, but also in-depth examination of all equipment, manpower and environmental limitations. IPRO 349 was established to examine these (and many more) considerations in the viability of sold fuel from biomass. Specifically, we have narrowed the scope of our research to biomass derived from corn stover (leaves and stalk left in the ground after harvesting) within the state of Illinois. Illinois was chosen because it is currently the largest producer of corn in the nation.[2] Corn stover has been shown to have an energy content of 5,290 Btu/lb. wet, and 7,560 Btu/lb. dry.[2]With such an approach, it may be possible to utilize what would otherwise be considered “waste” to produce useable, renewable energy. For the purposes of this project, cogeneration, or the simultaneous generation of both electricity and useful heat will be examined.
Deliverables
Show less
- Title
- Solid Fuel from Biomass for Cogeneration (Semester Unknown) IPRO 349: Solid Fuel from Biomass for Cogeneration IPRO 349 Project Plan Sp08
- Creator
- Mikesell, Jonathan, Dlugosz, Anna, Heffernan, Joseph, James, Joshua, Vassi, Anna, Yap, Ying Bing, Yeap, Xin Yi, Chacko, Serena, Ruidera, Ryan, Stanfield, Terrance
- Date
- 2008, 2008-05
- Description
-
Renewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from...
Show moreRenewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from any naturally replenish-able source. This may include everything from solar to wind power, as well as biomass or biofuels. When considering biomass, or any (living or recently-dead) biological material, the chemical energy of the molecules is generally collected through combustion. The area of liquid fuels from biomass has especially gained much notoriety and support in recent years. This is due to the lower emissions and clean-burning nature of these fuels when compared to more traditional approaches, as well as the obvious renewable nature of the starting material. While vegetable oils or animal fats can be used as a replacement for diesel fuels, corn, switchgrass, or other grains are more widely used to produce ethanol for use in common combustion engines. Today’s E85 fuel is sold to customers with a chemical makeup of 85% ethanol and 15% gasoline. The use of solid biomass as a direct supplier of energy, however, is an area still left relatively unexplored in this growing field. In theory, and as preliminary research suggests, harvesting energy directly from solid biomass may be considerably more efficient than gathering it from its processed liquid counterpart. In fact, some studies suggest that the energy acquired from burning ethanol is up to 67% lower than is contained in the plant cellulose from which it is derived.[1] There are, however, several other factors besides energy projections to consider when looking at the economic and market viability of such an approach. For example, one of the main advantages of liquid fuels over solid is the ease of transportation and storage. Additionally, the feasibility of developing a whole new process of biomass collection and processing must be balanced with economic and logistical constraints. This includes not only careful analysis of energy and cost balances, but also in-depth examination of all equipment, manpower and environmental limitations. IPRO 349 was established to examine these (and many more) considerations in the viability of sold fuel from biomass. Specifically, we have narrowed the scope of our research to biomass derived from corn stover (leaves and stalk left in the ground after harvesting) within the state of Illinois. Illinois was chosen because it is currently the largest producer of corn in the nation.[2] Corn stover has been shown to have an energy content of 5,290 Btu/lb. wet, and 7,560 Btu/lb. dry.[2]With such an approach, it may be possible to utilize what would otherwise be considered “waste” to produce useable, renewable energy. For the purposes of this project, cogeneration, or the simultaneous generation of both electricity and useful heat will be examined.
Deliverables
Show less
- Title
- Solid Fuel from Biomass for Cogeneration (Semester Unknown) IPRO 349: Solid Fuel from Biomass for Cogeneration IPRO 349 Poster1 Sp08
- Creator
- Mikesell, Jonathan, Dlugosz, Anna, Heffernan, Joseph, James, Joshua, Vassi, Anna, Yap, Ying Bing, Yeap, Xin Yi, Chacko, Serena, Ruidera, Ryan, Stanfield, Terrance
- Date
- 2008, 2008-05
- Description
-
Renewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from...
Show moreRenewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from any naturally replenish-able source. This may include everything from solar to wind power, as well as biomass or biofuels. When considering biomass, or any (living or recently-dead) biological material, the chemical energy of the molecules is generally collected through combustion. The area of liquid fuels from biomass has especially gained much notoriety and support in recent years. This is due to the lower emissions and clean-burning nature of these fuels when compared to more traditional approaches, as well as the obvious renewable nature of the starting material. While vegetable oils or animal fats can be used as a replacement for diesel fuels, corn, switchgrass, or other grains are more widely used to produce ethanol for use in common combustion engines. Today’s E85 fuel is sold to customers with a chemical makeup of 85% ethanol and 15% gasoline. The use of solid biomass as a direct supplier of energy, however, is an area still left relatively unexplored in this growing field. In theory, and as preliminary research suggests, harvesting energy directly from solid biomass may be considerably more efficient than gathering it from its processed liquid counterpart. In fact, some studies suggest that the energy acquired from burning ethanol is up to 67% lower than is contained in the plant cellulose from which it is derived.[1] There are, however, several other factors besides energy projections to consider when looking at the economic and market viability of such an approach. For example, one of the main advantages of liquid fuels over solid is the ease of transportation and storage. Additionally, the feasibility of developing a whole new process of biomass collection and processing must be balanced with economic and logistical constraints. This includes not only careful analysis of energy and cost balances, but also in-depth examination of all equipment, manpower and environmental limitations. IPRO 349 was established to examine these (and many more) considerations in the viability of sold fuel from biomass. Specifically, we have narrowed the scope of our research to biomass derived from corn stover (leaves and stalk left in the ground after harvesting) within the state of Illinois. Illinois was chosen because it is currently the largest producer of corn in the nation.[2] Corn stover has been shown to have an energy content of 5,290 Btu/lb. wet, and 7,560 Btu/lb. dry.[2]With such an approach, it may be possible to utilize what would otherwise be considered “waste” to produce useable, renewable energy. For the purposes of this project, cogeneration, or the simultaneous generation of both electricity and useful heat will be examined.
Deliverables
Show less
- Title
- Solid Fuel from Biomass for Cogeneration (Semester Unknown) IPRO 349: Solid Fuel from Biomass for Cogeneration IPRO 349 Brochure Sp08
- Creator
- Mikesell, Jonathan, Dlugosz, Anna, Heffernan, Joseph, James, Joshua, Vassi, Anna, Yap, Ying Bing, Yeap, Xin Yi, Chacko, Serena, Ruidera, Ryan, Stanfield, Terrance
- Date
- 2008, 2008-05
- Description
-
Renewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from...
Show moreRenewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from any naturally replenish-able source. This may include everything from solar to wind power, as well as biomass or biofuels. When considering biomass, or any (living or recently-dead) biological material, the chemical energy of the molecules is generally collected through combustion. The area of liquid fuels from biomass has especially gained much notoriety and support in recent years. This is due to the lower emissions and clean-burning nature of these fuels when compared to more traditional approaches, as well as the obvious renewable nature of the starting material. While vegetable oils or animal fats can be used as a replacement for diesel fuels, corn, switchgrass, or other grains are more widely used to produce ethanol for use in common combustion engines. Today’s E85 fuel is sold to customers with a chemical makeup of 85% ethanol and 15% gasoline. The use of solid biomass as a direct supplier of energy, however, is an area still left relatively unexplored in this growing field. In theory, and as preliminary research suggests, harvesting energy directly from solid biomass may be considerably more efficient than gathering it from its processed liquid counterpart. In fact, some studies suggest that the energy acquired from burning ethanol is up to 67% lower than is contained in the plant cellulose from which it is derived.[1] There are, however, several other factors besides energy projections to consider when looking at the economic and market viability of such an approach. For example, one of the main advantages of liquid fuels over solid is the ease of transportation and storage. Additionally, the feasibility of developing a whole new process of biomass collection and processing must be balanced with economic and logistical constraints. This includes not only careful analysis of energy and cost balances, but also in-depth examination of all equipment, manpower and environmental limitations. IPRO 349 was established to examine these (and many more) considerations in the viability of sold fuel from biomass. Specifically, we have narrowed the scope of our research to biomass derived from corn stover (leaves and stalk left in the ground after harvesting) within the state of Illinois. Illinois was chosen because it is currently the largest producer of corn in the nation.[2] Corn stover has been shown to have an energy content of 5,290 Btu/lb. wet, and 7,560 Btu/lb. dry.[2]With such an approach, it may be possible to utilize what would otherwise be considered “waste” to produce useable, renewable energy. For the purposes of this project, cogeneration, or the simultaneous generation of both electricity and useful heat will be examined.
Deliverables
Show less
- Title
- Solid Fuel from Biomass for Cogeneration (Semester Unknown) IPRO 349: Solid Fuel from Biomass for Cogeneration IPRO 349 Ethics Sp08
- Creator
- Mikesell, Jonathan, Dlugosz, Anna, Heffernan, Joseph, James, Joshua, Vassi, Anna, Yap, Ying Bing, Yeap, Xin Yi, Chacko, Serena, Ruidera, Ryan, Stanfield, Terrance
- Date
- 2008, 2008-05
- Description
-
Renewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from...
Show moreRenewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from any naturally replenish-able source. This may include everything from solar to wind power, as well as biomass or biofuels. When considering biomass, or any (living or recently-dead) biological material, the chemical energy of the molecules is generally collected through combustion. The area of liquid fuels from biomass has especially gained much notoriety and support in recent years. This is due to the lower emissions and clean-burning nature of these fuels when compared to more traditional approaches, as well as the obvious renewable nature of the starting material. While vegetable oils or animal fats can be used as a replacement for diesel fuels, corn, switchgrass, or other grains are more widely used to produce ethanol for use in common combustion engines. Today’s E85 fuel is sold to customers with a chemical makeup of 85% ethanol and 15% gasoline. The use of solid biomass as a direct supplier of energy, however, is an area still left relatively unexplored in this growing field. In theory, and as preliminary research suggests, harvesting energy directly from solid biomass may be considerably more efficient than gathering it from its processed liquid counterpart. In fact, some studies suggest that the energy acquired from burning ethanol is up to 67% lower than is contained in the plant cellulose from which it is derived.[1] There are, however, several other factors besides energy projections to consider when looking at the economic and market viability of such an approach. For example, one of the main advantages of liquid fuels over solid is the ease of transportation and storage. Additionally, the feasibility of developing a whole new process of biomass collection and processing must be balanced with economic and logistical constraints. This includes not only careful analysis of energy and cost balances, but also in-depth examination of all equipment, manpower and environmental limitations. IPRO 349 was established to examine these (and many more) considerations in the viability of sold fuel from biomass. Specifically, we have narrowed the scope of our research to biomass derived from corn stover (leaves and stalk left in the ground after harvesting) within the state of Illinois. Illinois was chosen because it is currently the largest producer of corn in the nation.[2] Corn stover has been shown to have an energy content of 5,290 Btu/lb. wet, and 7,560 Btu/lb. dry.[2]With such an approach, it may be possible to utilize what would otherwise be considered “waste” to produce useable, renewable energy. For the purposes of this project, cogeneration, or the simultaneous generation of both electricity and useful heat will be examined.
Deliverables
Show less
- Title
- Solid Fuel from Biomass for Cogeneration (Semester Unknown) IPRO 349: Solid Fuel from Biomass for Cogeneration IPRO 349 Poster2 Sp08
- Creator
- Mikesell, Jonathan, Dlugosz, Anna, Heffernan, Joseph, James, Joshua, Vassi, Anna, Yap, Ying Bing, Yeap, Xin Yi, Chacko, Serena, Ruidera, Ryan, Stanfield, Terrance
- Date
- 2008, 2008-05
- Description
-
Renewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from...
Show moreRenewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from any naturally replenish-able source. This may include everything from solar to wind power, as well as biomass or biofuels. When considering biomass, or any (living or recently-dead) biological material, the chemical energy of the molecules is generally collected through combustion. The area of liquid fuels from biomass has especially gained much notoriety and support in recent years. This is due to the lower emissions and clean-burning nature of these fuels when compared to more traditional approaches, as well as the obvious renewable nature of the starting material. While vegetable oils or animal fats can be used as a replacement for diesel fuels, corn, switchgrass, or other grains are more widely used to produce ethanol for use in common combustion engines. Today’s E85 fuel is sold to customers with a chemical makeup of 85% ethanol and 15% gasoline. The use of solid biomass as a direct supplier of energy, however, is an area still left relatively unexplored in this growing field. In theory, and as preliminary research suggests, harvesting energy directly from solid biomass may be considerably more efficient than gathering it from its processed liquid counterpart. In fact, some studies suggest that the energy acquired from burning ethanol is up to 67% lower than is contained in the plant cellulose from which it is derived.[1] There are, however, several other factors besides energy projections to consider when looking at the economic and market viability of such an approach. For example, one of the main advantages of liquid fuels over solid is the ease of transportation and storage. Additionally, the feasibility of developing a whole new process of biomass collection and processing must be balanced with economic and logistical constraints. This includes not only careful analysis of energy and cost balances, but also in-depth examination of all equipment, manpower and environmental limitations. IPRO 349 was established to examine these (and many more) considerations in the viability of sold fuel from biomass. Specifically, we have narrowed the scope of our research to biomass derived from corn stover (leaves and stalk left in the ground after harvesting) within the state of Illinois. Illinois was chosen because it is currently the largest producer of corn in the nation.[2] Corn stover has been shown to have an energy content of 5,290 Btu/lb. wet, and 7,560 Btu/lb. dry.[2]With such an approach, it may be possible to utilize what would otherwise be considered “waste” to produce useable, renewable energy. For the purposes of this project, cogeneration, or the simultaneous generation of both electricity and useful heat will be examined.
Deliverables
Show less
- Title
- Solid Fuel from Biomass for Cogeneration (Semester Unknown) IPRO 349: Solid Fuel from Biomass for Cogeneration IPRO 349 Final Report Sp08
- Creator
- Mikesell, Jonathan, Dlugosz, Anna, Heffernan, Joseph, James, Joshua, Vassi, Anna, Yap, Ying Bing, Yeap, Xin Yi, Chacko, Serena, Ruidera, Ryan, Stanfield, Terrance
- Date
- 2008, 2008-05
- Description
-
Renewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from...
Show moreRenewable energy is one of the most important and widely researched topics today. It is classically defined as any form of energy coming from any naturally replenish-able source. This may include everything from solar to wind power, as well as biomass or biofuels. When considering biomass, or any (living or recently-dead) biological material, the chemical energy of the molecules is generally collected through combustion. The area of liquid fuels from biomass has especially gained much notoriety and support in recent years. This is due to the lower emissions and clean-burning nature of these fuels when compared to more traditional approaches, as well as the obvious renewable nature of the starting material. While vegetable oils or animal fats can be used as a replacement for diesel fuels, corn, switchgrass, or other grains are more widely used to produce ethanol for use in common combustion engines. Today’s E85 fuel is sold to customers with a chemical makeup of 85% ethanol and 15% gasoline. The use of solid biomass as a direct supplier of energy, however, is an area still left relatively unexplored in this growing field. In theory, and as preliminary research suggests, harvesting energy directly from solid biomass may be considerably more efficient than gathering it from its processed liquid counterpart. In fact, some studies suggest that the energy acquired from burning ethanol is up to 67% lower than is contained in the plant cellulose from which it is derived.[1] There are, however, several other factors besides energy projections to consider when looking at the economic and market viability of such an approach. For example, one of the main advantages of liquid fuels over solid is the ease of transportation and storage. Additionally, the feasibility of developing a whole new process of biomass collection and processing must be balanced with economic and logistical constraints. This includes not only careful analysis of energy and cost balances, but also in-depth examination of all equipment, manpower and environmental limitations. IPRO 349 was established to examine these (and many more) considerations in the viability of sold fuel from biomass. Specifically, we have narrowed the scope of our research to biomass derived from corn stover (leaves and stalk left in the ground after harvesting) within the state of Illinois. Illinois was chosen because it is currently the largest producer of corn in the nation.[2] Corn stover has been shown to have an energy content of 5,290 Btu/lb. wet, and 7,560 Btu/lb. dry.[2]With such an approach, it may be possible to utilize what would otherwise be considered “waste” to produce useable, renewable energy. For the purposes of this project, cogeneration, or the simultaneous generation of both electricity and useful heat will be examined.
Deliverables
Show less