We study properties of semi-elementary imsets and elementary imsets introduced by Studeny [10]. The rules of the semi-graphoid axiom ... Show moreWe study properties of semi-elementary imsets and elementary imsets introduced by Studeny [10]. The rules of the semi-graphoid axiom (decomposition, weak union and contraction) for conditional independence statements can be translated into a simple identity among three semi-elementary imsets. By recursively applying the identity, any semi-elementary imset can be written as a sum of elementary imsets, which we call a representation of the semi-elementary imset. A semi-elementary imset has many representations. We study properties of the set of possible representations of a semi-elementary imset and prove that all representations are connected by relations among four elementary imsets. Show less

We consider a series of configurations defined by fibers of a given base configuration. We prove that Markov degree of the configurations is... Show moreWe consider a series of configurations defined by fibers of a given base configuration. We prove that Markov degree of the configurations is bounded from above by the Markov complexity of the base configuration. As important examples of base configurations we consider incidence matrices of graphs and study the maximum Markov degree of configurations defined by fibers of the incidence matrices. In particular we give a proof that the Markov degree for two-way transportation polytopes is three. Show less

In this note, we propose a new linear-algebraic method for the implication problem among conditional independence statements, which is... Show moreIn this note, we propose a new linear-algebraic method for the implication problem among conditional independence statements, which is inspired by the factorization characterization of conditional independence. First, we give a criterion in the case of a discrete strictly positive density and relate it to an earlier linear-algebraic approach. Then, we extend the method to the case of a discrete density that need not be strictly positive. Finally, we provide a computational result in the case of six variables. Show less