We study properties of semi-elementary imsets and elementary imsets introduced by Studeny [10]. The rules of the semi-graphoid axiom ... Show moreWe study properties of semi-elementary imsets and elementary imsets introduced by Studeny [10]. The rules of the semi-graphoid axiom (decomposition, weak union and contraction) for conditional independence statements can be translated into a simple identity among three semi-elementary imsets. By recursively applying the identity, any semi-elementary imset can be written as a sum of elementary imsets, which we call a representation of the semi-elementary imset. A semi-elementary imset has many representations. We study properties of the set of possible representations of a semi-elementary imset and prove that all representations are connected by relations among four elementary imsets. Show less

In this note, we propose a new linear-algebraic method for the implication problem among conditional independence statements, which is... Show moreIn this note, we propose a new linear-algebraic method for the implication problem among conditional independence statements, which is inspired by the factorization characterization of conditional independence. First, we give a criterion in the case of a discrete strictly positive density and relate it to an earlier linear-algebraic approach. Then, we extend the method to the case of a discrete density that need not be strictly positive. Finally, we provide a computational result in the case of six variables. Show less