Search results
(7,421 - 7,440 of 7,598)
Pages
- Title
- ROBUST AND EXPLAINABLE RESULTS UTILIZING NEW METHODS AND NON-LINEAR MODELS
- Creator
- Onallah, Amir
- Date
- 2022
- Description
-
This research focuses on robustness and explainability of new methods, and nonlinear analysis compared to traditional methods and linear...
Show moreThis research focuses on robustness and explainability of new methods, and nonlinear analysis compared to traditional methods and linear analysis. Further, it demonstrates that making assumptions, reducing the data, or simplifying the problem results in negative effect on the outcomes. This study utilizes the U.S. Patent Inventor database and the Medical Innovation dataset. Initially, we employ time-series models to enhance the quality of the results for event history analysis (EHA), add insights, and infer meanings, explanations, and conclusions. Then, we introduce newer algorithms of machine learning and machine learning with a time-to-event element to offer more robust methods than previous papers and reach optimal solutions by removing assumptions or simplifications of the problem, combine all data that encompasses the maximum knowledge, and provide nonlinear analysis.
Show less
- Title
- Automated Successive Baseline Schedule Model
- Creator
- Patel, Mihir Prakashbhai
- Date
- 2021
- Description
-
The construction project involves many stakeholders and diverse phases. Usually, a construction schedule is initially set up as a simple ideal...
Show moreThe construction project involves many stakeholders and diverse phases. Usually, a construction schedule is initially set up as a simple ideal case scenario, but then, during construction, the project faces modifications such as delay, acceleration, and change in logic caused by the project’s complexity and inherent risk. To recover the damage(s) caused by these modifications, the parties responsible for them should be identified accurately. Researchers and practitioners developed and used various delay analysis models to quantify delays, but the selection of the model depends on the time of analysis, available information, and expertise of the analyst. So, the results can be biased. The general problem is that most delay analysis models consider only delays in quantifying impacts rather than every type of modification that impacted the project, including CPM logic changes and adding/removing activities during construction. This study proposes a new successive baseline model to enable the precise analysis of the impacts of all sorts of modifications that occur during construction. This model can achieve unbiased and accurate results. The analysis process can also be computerized into a web application to improve efficiency and productivity. The fundamental concepts of the various modifications that can occur in the work schedule during construction and the analysis of the modifications’ impacts are presented in this study. Issues related to concurrency, float ownership, type of modification, selection of delay analysis model, and challenges with automation are also highlighted to broaden the understanding disagreements of the parties to a construction contract. A case example is presented to prove the accuracy and usefulness of the proposed model and web application.
Show less
- Title
- New Insights to Thermoelectrics from Fundamental Transport Properties to Potential Materials and Device Design
- Creator
- Pan, Zhenyu
- Date
- 2022
- Description
-
Thermoelectric (TE) materials have been widely studied as their ability to make direct energy conversion between heat and electricity. However...
Show moreThermoelectric (TE) materials have been widely studied as their ability to make direct energy conversion between heat and electricity. However, the conversion efficiency is still low compared with conventional devices no matter in power generation or electrical cooling. Therefore, most efforts have been made to improve the zT of TE materials, which is the commonly accepted metric for determining the performance of TE materials. But the progress is slow as the key parameters governing the zT is interrelated to each other which makes improving one often at the cost of the others leading to a narrow use of TE applications. Thus this thesis does not confine itself only in searching for high zT TE materials but also exploring useful things which are buried or ignored in previous thermoelectric researches from fundamental transport properties to TE device design. Firstly, we reevaluated the photo-Seebeck effect, which has been known for decades, and demonstrated that it is a powerful tool for semiconductor study as it allows the determination of mobilities, photo-carrier densities, even weighed mobilities (hence effective masses) of both electrons and holes and impact of defects all from a single sample. We then investigated a newly discovered low dimensional material, 2D tellurene, which has the potential to decouple the interrelated parameters to achieve a high zT. Lastly, we reconsidered the question that whether zT is the only merit index determining TE device performance. We hope this thesis can shed some light on thermoelectrics both from fundamental transport properties to device design.
Show less
- Title
- How Does Self-Stigma Influence Functionality in People with Serious Mental Illness? A Multiple Mediation Model of "Why-Try" Effect, Coping Resources, and Personal Recovery
- Creator
- Qin, Sang
- Date
- 2022
- Description
-
People with serious mental illness (SMI) face self-stigma effects that often undermine their functionality. Functionality herein refers to a...
Show morePeople with serious mental illness (SMI) face self-stigma effects that often undermine their functionality. Functionality herein refers to a person's execution of tasks (i.e., activities) and engagement in life situations (i.e., participation). This study used a path model to examine three mediating factors between self-stigma and functionality: The "why-try" effect, coping resources, and personal recovery. Specifically, the “why-try” effect was viewed as an extension of self-stigma harm that occurred when people suffered from a loss of self-esteem and self-efficacy. Coping resources were conceptualized as individuals’ strengths and the support they had to overcome negative stigma outcomes, particularly stigma stress. Endorsement of personal recovery, namely pursuing self-defined life goals despite illness—had a buffering effect reducing self-stigma. These three mediators were examined simultaneously using an archival dataset. Due to poor internal consistency, coping resources were eventually removed from the model; the subsequent, revised model achieved a good model fit. Results showed that people with SMI experiencing self-stigma were found to have an enhanced "why-try" effect as well as reduced personal recovery, leading to a decline in functionality. Implications of the results and future research directions are discussed.
Show less
- Title
- Decreasing Body Dissatisfaction in Male College Athletes: A Pilot Study of the Male Athlete Body Project
- Creator
- Perelman, Hayley
- Date
- 2020
- Description
-
Body dissatisfaction is associated with marked distress and often precipitates disordered eating symptomology. Body dissatisfaction in male...
Show moreBody dissatisfaction is associated with marked distress and often precipitates disordered eating symptomology. Body dissatisfaction in male athletes is an important area to explore, as research in this field often focuses on eating disorders in female athletes. The current body of literature regarding male college athletes suggests that they experience pressures associated with both societal muscular ideals and sport performance. While there is a clear association between drive for muscularity and body dissatisfaction in college male athletes, no study to date has evaluated the efficacy of a body dissatisfaction intervention for this population. Therefore, the present study sought to investigate the efficacy and feasibility of a pilot intervention program that targeted body dissatisfaction in male college athletes. Participants were randomized into an adapted version of the Female Athlete Body Project (i.e., the Male Athlete Body Project) or an assessment-only control condition. A total of 79 male college athletes (39 in treatment condition) completed this study for a retention rate of 84.9%. Participants in the experimental group attended three 80-minute group sessions once a week for three weeks. All participants completed measures of body dissatisfaction, internalization of the body ideal, drive for muscularity, negative affect, and sport confidence at three time points: baseline, post-treatment (three weeks after baseline for the control condition), and one-month follow-up. Hierarchical Linear Modeling was used to assess differences between conditions across time. Participation in the MABP improved men’s satisfaction with specific body parts, drive for muscularity, and body-ideal internalization at post-treatment. Men in the MABP also reported improvements in appearance evaluation and overweight preoccupation at post-treatment and one-month follow-up, and in negative affect at one-month follow-up only. Improvements in drive for muscularity were retained at one-month follow-up. This study provides preliminary evidence for the feasibility and efficacy of the Male Athlete Body Project.
Show less
- Title
- INTELLIGENT SOLID STATE CIRCUIT BREAKERS USING WIDE BANDGAP SEMICONDUCTORS
- Creator
- Zhou, Yuanfeng
- Date
- 2021
- Description
-
Electricity, in its predominant form of alternating current (AC), is at the heart of modern civilization. However, direct current (DC)...
Show moreElectricity, in its predominant form of alternating current (AC), is at the heart of modern civilization. However, direct current (DC) electricity is re-emerging, offering higher transmission efficiency, better system stability, better match with modern electrical loads, and easier integration of renewable and storage resources than AC. DC power is gaining tractions in HVDC or MVDC grids, DC data centers, photovoltaic farms, EV charging infrastructures, shipboard, and aircraft power systems. However, DC fault protection remains a major challenge. Interruption of DC currents is extremely difficult due to the lack of current zero crossings which are naturally available in AC power systems. Conventional mechanical breakers only offer a very limited DC current interruption capability even after significant power derating. Hybrid circuit breakers (HCBs) offers a relatively low conduction loss but a response time too slow to protect many low-impedance DC grids. Solid state circuit breakers (SSCBs) can quickly interrupt a DC fault current within tens of microseconds but suffer from high conduction losses. Furthermore, it is generally difficult for an SSCB to distinguish between a short circuit fault and a normal inrush current condition during the start-up of a capacitive load.The purpose of this thesis is to develop a tri-mode, intelligent solid-state circuit breaker technology using wide bandgap semiconductors (especially Gallium Nitride transistors), referred to as iBreaker. The iBreaker design methodology includes the use of mΩ-resistance GaN and SiC devices, new circuit topology and control techniques beyond the commonly used ON/OFF switch configuration, and integration of intelligent functions without increasing component count. The iBreaker adopts a distinct pulse width modulation (PWM) current limiting (PWM-CL) state in addition to the conventional ON and OFF states to facilitate soft startup, fault authentication, and fault location functions. Key design elements, such as use of wide bandgap (particularly GaN) switches, tri-mode operation, combined digital and analog control, the bidirectional buck topology, variable PWM frequency control and universal hardware/software architecture, are discussed in detail. Multiple iBreaker prototypes, rated at 380 V/20 A and 1000 V/10 A, respectively, are built and tested to validate the proposed SSCB design concept. 99.95% transmission efficiency, passive cooling, and μs-scale response time are demonstrated experimentally.
Show less
- Title
- SAFETY AND MOBILITY IMPACTS ASSESSMENT OF THE CHICAGO BIKE LANE PROGRAM
- Creator
- Zhao, Yu
- Date
- 2021
- Description
-
In recent years, bike as a travel mode is getting increasingly popular among large cities in the U.S. These cities also found promoting bike...
Show moreIn recent years, bike as a travel mode is getting increasingly popular among large cities in the U.S. These cities also found promoting bike mode can potentially mitigate traffic congestion issues, reduce carbon emission and improve the quality of life for residents. Therefore, many cities-initiated bike-related programs promote the bike mode from all aspects, such as establishing a shared bike system and developing bike-related facilities. Specifically, bike lane installation is widely seen in large cities as a pivot component of bike promotion programs. Due to the installation of bike lanes on the existing network, vehicles’ safety and mobility performance may be affected due to the variation of facilities. This study attempts to propose a methodology to quantify the safety and mobility impacts on vehicles brought by bike lane installation. The proposed method accounts for safety impact by using predicted crashes in conjunction with field observed crash data for empirical Bayes (EB) before-after comparison group analysis. The mobility impact is captured by comparing the segment average travel time before and after the bike lane installation. Further, vehicle volume information is involved in the consumer surplus computation to quantify the variation in vehicle safety, and mobility performance resulting from the bike lane installation. A case study is conducted using a real data set from the city of Chicago bike lane program. The results reveal that the safety and mobility impacts vary mainly depending on the type of bike lane installed and location.
Show less
- Title
- The Development of a Measure of Public Stigma Towards Adults With Autism
- Creator
- Beedle, Robert Brian
- Date
- 2022
- Description
-
Adults with autism (AwA) report experiences of stigma and discrimination. Yet, quantitative research suggests that public attitudes are...
Show moreAdults with autism (AwA) report experiences of stigma and discrimination. Yet, quantitative research suggests that public attitudes are relatively benign. This research discrepancy is compounded by the present lack of a stakeholder-informed, theoretically-guided measure of the stigma towards AwA. The objective of the present study was to develop a measure of stigma towards AwA following best practices survey methodology. First, existing related measures were reviewed for possible candidate items, yielding 36 draft questions related to the stigma of AwA. Next, seven stakeholders in the AwA community were recruited to provide feedback on their experiences of stigma and discrimination, as well as feedback on the draft items. Following stakeholder feedback, draft items were edited, added, or removed based on feedback from the participants with AwA and their lived experiences, resulting in a revised measure of 51 candidate items. Finally, these 51 items underwent a quantitative phase with participants recruited through MTurk (N = 357). Exploratory factor analyses were conducted in order to generate a data driven factor structure that reflected stigma theory. The end result was a 20-item, four factor solution measuring numerous components of stigma within factors including cognitive components of stigma, blame, positive and negative affect, and comfort with close contact. The resulting measurement tool was titled the Public Stigma towards Adults with Autism Scale (PSAWA) and demonstrated strong psychometric properties. The tool has utility for further studying stigma towards AwA and assessing stigma interventions.
Show less
- Title
- Population dynamics and pathogens of the western bean cutworm (Striacosta albicosta)
- Creator
- Bunn, Dakota C.
- Date
- 2022
- Description
-
Understanding an herbivorous pest’s population dynamics is necessary to ensure proper integrated pest management strategies are being...
Show moreUnderstanding an herbivorous pest’s population dynamics is necessary to ensure proper integrated pest management strategies are being developed and used. The western bean cutworm is a pest of both corn and dry beans that is understudied and difficult to manage due to its nocturnal lifestyle, adaptation to current management techniques and a general lack of understanding regarding its population structure. Our studies focused on the effects of host plant and pathogens on western bean cutworm population structure and found that mainly adults which developed on corn are contributing to the next generation of western bean cutworm in Michigan, making corn and dry beans unsuitable as co-refuges in insecticide resistance management strategies.We also found a 100% prevalence of the Nosema sp. in the adult population of western bean cutworm in Michigan. This prevalence, when paired with the consistent crop damage caused annually by the western bean cutworm, which confirms an abundance of cutworms are present, suggests the infection is slow acting and non-lethal to its host. Following sequencing, assembly, and annotation of the Nosema sp. genome, we were unable to provide a reason for the Nosema sp.’s low virulence, however, we were able to confirm the presence of all 6 polar tube proteins. Upon further examination of the Nosema sp. genome we were able to determine that it is a true Nosema with genome size of ~9.57 Mbp (~20% of which are transposable elements), which is within the typical range for this genus.
Show less
- Title
- Carrier phase multipath characterization and frequency-domain bounding
- Creator
- Benz, Chloe
- Date
- 2022
- Description
-
Safely relying on Global Navigation Satellite Systems (GNSS) measurements for position estimation using multi-sensor navigation algorithms,...
Show moreSafely relying on Global Navigation Satellite Systems (GNSS) measurements for position estimation using multi-sensor navigation algorithms, especially in critical phases of flight – such as takeoff or landing – requires precise knowledge of the errors affecting position estimates and their extrema values at any time. This work investigates a method for characterization and power-spectral density (PSD) bounding of GNSS carrier phase multipath error intended for use in sensor fusion for aircraft navigation. In this dissertation, two methods of GNSS carrier phase multipath characterization are explored: single frequency dual antenna (DA) and single antenna dual frequency (DF). However, since not all aircraft are equipped with multiple GNSS antennas, because the DA method entails a meticulous tracking of the lever arm between the two antennas, and as multipath seen by two antennas in a short baseline configuration may cancel out, the DF method is preferred and is the main emphasis of this work. By subtracting carrier phase measurements collected by a receiver overtwo distinct frequencies, a composite measurement containing ionospheric delay and carrier phase multipath is obtained. The ionospheric delay has slower dynamics than multipath, so it is removed using a high pass filter. The filter cutoff frequency is carefully picked based on a study of ionospheric delay dynamics. The DF method is validated on a rooftop GPS carrier phase dataset, and finally, directions and considerations for its ultimate intended use on airborne collected GNSS carrier phase data are provided.
Show less
- Title
- KERNEL FREE BOUNDARY INTEGRAL METHOD AND ITS APPLICATIONS
- Creator
- Cao, Yue
- Date
- 2022
- Description
-
We developed a kernel-free boundary integral method (KFBIM) for solving variable coefficients partial differential equations (PDEs) in a...
Show moreWe developed a kernel-free boundary integral method (KFBIM) for solving variable coefficients partial differential equations (PDEs) in a doubly-connected domain. We focus our study on boundary value problems (BVP) and interface problems. A unique feature of the KFBIM is that the method does not require an analytical form of the Green’s function for designing quadratures, but rather computes boundary or volume integrals by solving an equivalent interface problem on Cartesian mesh. We decompose the problem defined in a doubly-connected domain into two separate interface problems. Then we evaluate integrals using a Krylov subspace iterative method in a finite difference framework. The method has second-order accuracy in space, and its complexity is linearly proportional to the number of mesh points. Numerical examples demonstrate that the method is robust for variable coefficients PDEs, even for cases when diffusion coefficients ratio is large and when two interfaces are close. We also develop two methods to compute moving interface problems whose coefficients in governing equations are spatial functions. Variable coefficients could be a non-homogeneous viscosity in Hele-Shaw problem or an uptake rate in tumor growth problems. We apply the KFBIM to compute velocity of the interface which allows more flexible boundary condition in a restricted domain instead of free space domain. A semi-implicit and an implicit methods were developed to evolve the interface. Both methods have few restrictions on the time step regardless of numerical stiffness. Theyalso could be extended to multi-phase problem, e.g., annulus domain. The methods have second-order accuracy in both space and time. Machine learning techniques have achieved magnificent success in the past decade. We couple the KFBIM with supervised learning algorithms to improve efficiency. In the KFBIM, we apply a finite difference scheme to find dipole density of the boundary integral iteratively, which is quite costly. We train a linear model to replace the finite difference solver in GMRES iterations. The cost, measured in CPU time, is significantly reduced. We also developed an efficient data generator for training and derived an empirical rule for data set size. In the future work, the model could be expanded to moving interface problems. The linear model will be replaced by neural network models, e.g., physics-informed neural networks (PINNs).
Show less
- Title
- PROGRAM SURVIVABILITY THROUGH K-VARIANT ARCHITECTURE
- Creator
- BEKIROGLU, BERK
- Date
- 2021
- Description
-
Numerous software systems, particularly mission and safety-critical systems, require a high level of security during their execution....
Show moreNumerous software systems, particularly mission and safety-critical systems, require a high level of security during their execution. Enhancing software security through architecture is a highly effective method of defending against cyberattacks. The N-version is a software architecture that was developed to increase the security of software systems. In the N-version architecture, functionally equivalent versions of a program run concurrently to complete a mission or task. Each version is developed independently by a different team using only the software specifications in common. As a result, each version is expected to contain unique vulnerabilities. Due to the high cost of developing and maintaining an N-version system, this architecture is typically used only in high-budget projects requiring a high-security level. The K-variant, an alternative architecture for enhancing system security, is explained and analyzed in this thesis. In contrast to the N-version architecture, each variant is automatically generated using source-to-source program transformation techniques. Automation significantly reduces the cost of developing variants in the K-variant architecture. The K-variant architecture can help protect systems from memory exploitation attacks. Various attack strategies can be used against K-variant systems in order to increase the likelihood of a successful attack. Various attack strategies are proposed and investigated in this thesis. Furthermore, experimental studies are being conducted to investigate various defense mechanisms against proposed attack strategies. The effectiveness of each defense mechanism against various attack strategies is evaluated by using a metric of the probability of an unsuccessful attack. Additionally, various source code program transformation techniques for generating new variants in the K-variant architecture have been proposed and investigated experimentally. This thesis also describes a machine learning technique for estimating the survivability of K-variant systems under various attack types and defense strategies. To make the design of K-variant systems easier, a neural network model is proposed. With the developed tool that utilizes the neural network model, fast and accurate predictions about the survivability of K-variant systems can be obtained.
Show less
- Title
- ESTIMATES OF AIR EXCHANGE RATES THROUGH THE USE OF TOTAL VOLATILE ORGANIC COMPOUND DECAY MEASUREMENTS
- Creator
- Bradley, Christopher
- Date
- 2021
- Description
-
Indoor air exchange rates are commonly used to assess the overall fitness of a building and assess its performance. More recently, air...
Show moreIndoor air exchange rates are commonly used to assess the overall fitness of a building and assess its performance. More recently, air exchange has become a concern due to the COVD-19 pandemic, requiring replacement air to ensure safety; especially so considering that humans spend much of their time indoors. Building science has focused on air exchange to quantify needs for thermal loads, balancing the overall tightness of a building with the amount of energy consumed. Moreover, guidelines have been created by several different organizations to maintain adequate ventilation to remove indoor air pollution, replacing it with clean outdoor air. Research focuses on how to maintain a comfortable and safe quality of indoor air while balancing the needs of the energy crisis.When installed with proper HVAC systems, air exchange rates can be set to a recommended value based upon the conditions of the environment. Buildings without mechanical ventilation face another issue, mainly that they only rely on natural ventilation and the infiltration rate. Temperature differences between the indoor and outdoor environment and the condition of wind speed and direction create pressure differences across the building envelope, influencing the infiltration rate, which can change the amount of air exchange in buildings with natural or mechanical ventilation. Currently, air exchange rates are commonly measured using tracer gases. More frequently used gases have included perfluorocarbon, sulfur hexafluoride, and carbon dioxide, though none of these have proven to be ideal tracers. Alongside this, cost and burden on the participants of these studies often limit the amount of measurements made. Numerous studies have been conducted on how to model the air exchange rate by the changes in concentrations, but accuracy depends on the amount of information available. Other attempts have been made to characterize buildings by their infiltration rate to make estimations, but other questions have arisen about the accuracy of these methods. Due to their ubiquity in indoor environments, volatile organic compounds have been suggested as a plausible tracer gas for measuring air exchange rates. The plausibility of this method raises questions, such as their behavior within the indoor environment, their ability to be measured and the cost to measure concentrations, and the analytical requirements to characterize the rates of removal as air exchange rates. However, due to the rapid increase of available technology in low cost, lightweight, high-resolution sensors, this novel method of using VOCs, especially indicators of total VOCs (TVOCs), may prove fruitful in measuring air exchange within specific microenvironments. Analysis of time-series TVOC concentration measurements taken from a study conducted in multiple residences was conducted to investigate the feasibility of using these measurements, and especially naturally occurring elevation and decay periods, as a proxy for calculating air exchange rates. Though the removal rates of these compounds fell within the range of typical air exchange rates for residential spaces, the results of this analysis suggest the method has potential but with limitations, including the unknown behavior of the individual compounds comprising TVOC measurements within the space, proximity and mixing effects, and potentially invalid comparisons to air exchange rates given from a LBLX model rather than simultaneous tracer gas tests. Future work should explore simultaneous use of TVOC measurements alongside conventional tracer gas testing to further explore the potential utility of such methods.
Show less
- Title
- INTELLIGENT STREET LIGHTING AND REMOTE POWER UNITS AS CASE STUDIES FOR CITIES TO DECARBONIZE
- Creator
- Burgess, Patrick G.
- Date
- 2022
- Description
-
There is a scientific consensus that atmospheric warming caused by the release of emissions will reach critical levels in our lifetime if...
Show moreThere is a scientific consensus that atmospheric warming caused by the release of emissions will reach critical levels in our lifetime if significant efforts are not made to decarbonize our buildings and power grid. The City of Los Angeles is a prime example of the challenges of decarbonizing, balancing global, federal, and state policies and issues and addressing environmental justice. The first research case studies of the details and challenges of decarbonization efforts include the implementation of the first networked light-emitting diode (LED) streetlights in the city of Chicago on IIT’s campus to improve the reliability and economics of its main campus, 2.5 mi south of downtown Chicago. Research shows that these networked LED streetlights greatly reduce a city's rising energy costs, but the CSMART project team has set out to prove the benefits of integrating an intelligent communications and control system with an existing smart grid infrastructure, such as an existing network and supervisory control and data acquisition (SCADA) systems. In addition to assessing the economic and environmental drivers for the intelligent streetlight solution, the project team is dedicated to assessing the potential cybersecurity vulnerabilities of such a system and working to mitigate or eliminate them. The second research case study covers off-grid remote power units providing continuous illumination for safer streets and safer driving that is unaffected by power outages. Thanks to individual lighting control potentially allowing for dimming, blinking, and even color changing, streetlights powered by RPUs can be used as emergency signaling devices, directing traffic during a city evacuation or other emergency. The RPU control and monitoring can be accessed through the cloud, thereby avoiding reliance on local servers.
Show less
- Title
- Assessing the Impact of Understanding Nature of Scientific Knowledge and Understanding Nature of Scientific Inquiry on Learning about Evolution in High School Students
- Creator
- Jimenez Pavez, Juan Paulo
- Date
- 2022
- Description
-
Nature of Scientific Knowledge (NOSK) and Nature of Scientific Inquiry (NOSI) are important components of scientific literacy and important...
Show moreNature of Scientific Knowledge (NOSK) and Nature of Scientific Inquiry (NOSI) are important components of scientific literacy and important educational objectives in science education. Recent literature theorizes that understanding both NOSK and NOSI increases students' understanding of science content knowledge. However, this assumption has yet to be tested empirically. Much research has been done on developing informed views of NOSK and NOSI for students in kindergarten through twelfth grade, but research on the effect of understanding NOSK and NOSI on facilitating science learning in high school appears limited.The main purpose of this study was to empirically test the assumption that understanding NOSK and NOSI improves science student content learning, in particular learning about evolution. This study also aimed to determine which NOSK and NOSI aspects are most useful in such an endeavor. Using a quasi-experimental, nonequivalent control group design, a sample of 453 9th grade high school students from 12 classes in a large Chilean city were randomly assigned to intervention and control groups via classroom clusters (Intervention groups = 6, Control groups = 6). Students in the intervention groups were given a special online explicit and reflective five-week NOSK/NOSI Unit, followed by an online five-week Evolution Content Unit, as a treatment. Those in the control groups received only the online five-week Evolution Content Unit. To measure understanding of NOSK, understanding of NOSI, and understanding about evolution, students answered three valid and reliable instruments: The Views of Nature of Science (VNOS D+), the Views about Scientific Inquiry (VASI), and a multiple-choice Evolution Content Test. The students' answers to the VNOS D+ and VASI questionnaires were scored as naive, mixed, or informed according to the level of understanding for each aspect, and the answers to the evolution content test were scored as correct or incorrect. The results of this study showed that the NOSK/NOSI Unit was effective in improving understanding of NOSK and NOSI aspects in the intervention groups. The results also showed that the Evolution Content Unit was effective in improving understanding about evolution in both groups. However, students in the intervention groups outperformed their peers in the control groups by scoring higher on the Evolution Content Test. Further analysis revealed that students with informed views of NOSK and NOSI achieved better scores on the Evolution Content Test than students with naive views, supporting the argument that understanding NOSK and NOSI facilitates learning about evolution. In addition, all aspects except for the difference between Theories and Laws (NOSK) had a significant positive impact on learning about evolution. Taken together, the findings of this dissertation support the assumption that understanding NOSK and NOSI improves learning about evolution. Furthermore, most NOSK and NOSI aspects seem to foster understanding about evolution. These are new insights, especially about the importance of understanding NOSI for learning about evolution. Some limitations for this study include the remote context in which the study took place and the potential bias in the qualitative analysis of the VNOS D+ and VASI questionnaires.
Show less
- Title
- Evaluating the Impact of Residential Indoor Air Quality and Ventilation and Filtration Interventions on Adult Asthma-Related Health Outcomes in Chicago, IL
- Creator
- Kang, Insung
- Date
- 2022
- Description
-
Human exposure to a variety of airborne pollutants is associated with various adverse health effects, ranging from respiratory symptoms to...
Show moreHuman exposure to a variety of airborne pollutants is associated with various adverse health effects, ranging from respiratory symptoms to exacerbation of chronic diseases to cardiovascular disease and cancer. While most of our knowledge of the adverse impacts of air pollution comes from studies utilizing outdoor air pollutants as surrogates for exposure, people spend most of their time indoors, especially at home, where pollutant concentrations are often higher than outdoors. And within homes, mechanical ventilation systems and filtration are increasingly recommended to provide fresh air for ventilation and dilute indoor pollutant sources. There are a variety of ventilation system types that can be used for home retrofits; however, there is limited information on how they affect indoor air quality (IAQ) from both indoor and outdoor sources and how they influence occupant health and well-being. Therefore, to fill some of these knowledge gaps, this research aims to evaluate the effects of indoor air quality broadly, as well as interventions with three common types of residential mechanical ventilation system retrofits (i.e., continuous exhaust-only, intermittent fan-integrated supply, and continuous balanced systems with energy recovery ventilators), on asthma-related health outcomes in a cohort of adults in Chicago, IL. The key findings of this dissertation indicate that exposures to indoor NO2 and PM, higher indoor temperature, and mold/dampness were associated with poorer asthma control. The home ventilation and air filtration interventions, regardless of ventilation system type, significantly improved asthma control of the study population (~4% increase in ACT score; p < 0.001), and led to reductions in indoor concentrations of formaldehyde (HCHO) (-19.5 ppb; -63%; p < 0.001), carbon dioxide (CO2) (-120 ppm; -15%; p < 0.001), nitrogen dioxide (NO2) (-1.8 ppb; -3%; p = 0.035), and particulate matter (PM), including PM1 (-4.9 µg/m3; -43%; p = 0.001), PM2.5 (-4.9 µg/m3; -39%; p = 0.003), and PM10 (-6.2 µg/m3; -41%; p = 0.003). Additionally, asthma control was significantly improved in all subgroups: participants who received both ventilation and filtration interventions (~6% increase in ACT score; p < 0.001); continuous exhaust-only systems (~3% increase in ACT score; p = 0.033); intermittent central-fan-integrated-supply (CFIS) systems (~3% increase in ACT score; p = 0.018); and continuous balanced systems with an energy recovery ventilator (ERV) (~7% increase in ACT score; p < 0.001). Indoor CO2 concentrations were significantly reduced in homes with continuous ventilation systems, including exhaust-only (-165 ppm, -20%; p = 0.005) and balanced ERV systems (-186 ppm, -23%; p = 0.004), while indoor particulate matter (PM1, PM2.5, and PM10) concentrations were significantly reduced in homes with ventilation systems with filtration upgrades, including CFIS (PM1: -5.3 µg/m3, -46%; PM2.5: -5.0 µg/m3, -39%; and PM10: -6.2 µg/m3, -41%; all p < 0.05) and balanced ERV systems (PM1: -7.5 µg/m3, -59%; PM2.5: -8.3 µg/m3, -58%; and PM10: -10.4 µg/m3, -61%; all p < 0.05). Last, results of a cost-benefit analysis (CBA) of the three types of mechanical ventilation systems over an assumed 10-year life span, which predicted impacts on mortality and asthma outcomes based on measured impacts on two indoor pollutants – PM2.5 and NO2 – relative to initial and operational costs, as well as filtration upgrade costs, suggest that the intermittent CFIS system with improved MERV 10 filtration was the most beneficial approach, with the central benefit-cost ratio (BCR) of 6.0, followed by the continuous balanced ERV system (central BCR = 3.7) and exhaust-only system (central BCR = 3.2). This dissertation provides the first known empirical data in the U.S. on asthma outcomes associated with different types of mechanical ventilation systems that have highly varying impacts on indoor pollutant concentrations of both indoor and outdoor origin and environmental conditions. Results are also expected to provide much-needed guidance to homeowners, contractors, builders, and agencies on the advantages and disadvantages of different types of residential mechanical ventilation systems.
Show less
- Title
- Self-Reconfigurable Soft Robots Based on Boundary-Constrained Granular Swarms
- Creator
- Karimi, Mohammad Amin
- Date
- 2022
- Description
-
Unlike conventional robots, which consist of rigid bodies and linkages, soft robots are composed of compliant and flexible components and...
Show moreUnlike conventional robots, which consist of rigid bodies and linkages, soft robots are composed of compliant and flexible components and actuators. This distinction enables adaptive behaviors in response to unpredictable environments, like manipulating objects with a variety of shapes. As such, soft robots afford greater potential over traditional robots for safe human interaction.Despite these advantages, there remain obstacles due to the challenges in modeling, controlling, and fabricating soft materials. For example, soft robots that rely on thermal or electrical actuation are typically slow to respond and unable to apply large forces as compared to traditional robots. Pneumatically actuated soft robots, while more responsive and capable of applying larger forces, generally need to be tethered to external control mechanisms, which becomes limiting in tasks that require lightweight, autonomous functionality.In contrast, this thesis describes a new type of robot that exhibits those same characteristics, but achieves them via a boundary-constrained swarm.The robotic structure consists of passive granular material surrounded by an active membrane that is composed of a swarm of interconnected robotic sub-units. The internal components are important for overall function, but their relative configuration is not. This allows for an effectively random, unstructured placement of the internal components, which in turn creates excellent morphability. Collectively, the subunits determine the overall shape of the robot and enable locomotion through interaction with external surfaces.The constrained swarm embodies the continuum, compliant, and configurable properties found in soft robots, but in this state the robot is limited in its ability to manipulate objects due to the relatively low force it can apply to external objects.To address this issue, the unique ability to execute a jamming phase transition is added to the robot. Importantly, jamming is controlled by the degree by which the passive particles are spatially confined by the membrane, and this in turn is controlled by the active sub-unit robots using different jamming mechanisms. The robot exploits its ability to transition between soft (unjammed) and rigid (jammed) states to induce fluid-like flexibility or solid-like rigidity in response to objects and features in the environment.In order to investigate this design concept, I have studied different prototype designs for the robot that varied in terms of the locomotion and jamming mechanisms. I also present a simulation framework in which I model the design and study the scalability of this class of robots. The simulation framework uses the Project Chrono platform, which is a multi-body dynamics library that allows for physics-driven collision and contact modeling.
Show less
- Title
- Workload Interference Analysis and Mitigation on Dragonfly Class Networks
- Creator
- Kang, Yao
- Date
- 2022
- Description
-
Dragonfly class of networks are promising interconnect topologies that support current and next-generation high-performance computing (HPC)...
Show moreDragonfly class of networks are promising interconnect topologies that support current and next-generation high-performance computing (HPC) systems. Serving as the "central nervous system", Dragonfly tightly couples tens of thousands of compute nodes together by providing high-bandwidth, low-latency data exchange for exascale computing capability. Dragonfly can support unprecedented system scale at a reasonable cost thanks to its hierarchical architecture. In Dragonfly systems, network resources such as routers and links are arranged into identical groups.Groups are all-to-all connected through global links, and routers within groups are connected via local links. In contrast to the fully connected inter-group topology, connections for the routers within groups are designed according to the system requirement. For example, the one-dimensional all-to-all connection is favored for higher network bandwidth, a two-dimensional grid arrangement can be constructed to support larger system size, and a tree structure router connection is built for the extreme system scale. The hierarchical design with groups enables the topology to support unprecedented system size while maintaining a low-diameter network. Packets can be minimally delivered by simply traversing the network hierarchy between groups through global links and reaching their destinations through local links. In case of network congestion, packets can be non-minimally forwarded through any intermediate group to increase the system throughput. As a result, all network resources are shared such that links and routers are not dedicated to any node pair. While link utilization is increased, shared network resources lead to inevitable network contention among different traffic flows, especially for the systems that hold multiple workloads at the same time. This network contention is observed as the workload interference that causes degraded system performance with delayed workload execution time. In this thesis, we first model and analyze the workload interference effect on Dragonfly+ topology through extensive system simulation.Based on the comprehensive interference study, we propose Q-adaptive routing, a multi-agent reinforcement learning based solution for Dragonfly systems. Compared with the existing routing solutions, the proposed Q-adaptive routing can learn to forward packets more efficiently with smaller packet latency and higher system throughput. Next, we demonstrate that intelligent routing algorithms such as Q-adaptive routing can greatly mitigate workload interference and optimize the overall system performance. Subsequently, we propose a dynamic job placement strategy for workload interference prevention. When combined with Q-adaptive routing, dynamic job placement gives users the flexibility to either reduce workload interference from communication intensive applications or protect target applications for higher performance stability.
Show less
- Title
- Intelligent Battery Switching Module for Hybrid Electric Aircraft
- Creator
- Kamal, Ahmad
- Date
- 2022
- Description
-
The growth in world economics, tourism and international cooperation has resulted in significant growth of civil aviation industry. This...
Show moreThe growth in world economics, tourism and international cooperation has resulted in significant growth of civil aviation industry. This growing number of fossil fuel reliant aircrafts will significantly increase waste gas emissions with detrimental impact on the environment. The system efficiency of the aircraft must be substantially improved to reduce the fuel burn and thus waste gas emissions. Therefore, the aircraft industry is pushing towards higher electrification of future aircrafts to increase system efficiency, reduce fuel burn and to lower emissions as well as operational costs. The more electric aircraft (MEA) design concept, commercially realized by Boeing 787 and Airbus A380, increases system efficiency by replacing the mechanical, pneumatic, and hydraulic systems with electrical systems. However, global regulation authorities demand further reduction in waste gas emissions and fuel burn. To meet these stringent demands, the aircraft industry is exploring hybrid electric aircrafts which can significantly reduce fuel burn by electrifying the propulsion train of the aircraft. This higher penetration of electrical energy in the aircraft warrants smart short-circuit protection with ultrafast response time. However, current hybrid aircrafts still use outdated mechanical and thermal short-circuit protection which have historically proven to cause numerous tragedies. Solid-state power controller (SSPC) is an alternate solution which uses semiconductor devices to offer faster response. However, the main drawbacks of SSPCs are their need for active cooling due to higher conduction loss and the use of foldback current limiting approach to limit the inrush current of DC-link capacitor of the powertrain. The foldback current limiting approach degrades the power semiconductor devices used due to excessive heat loss by driving the device near the safe operating area (SOA) limits of the device. This thesis presents a 750V/250A intelligent Li-ion battery switching module (BSM) for hybrid electric aircraft propulsion application. The BSM uses commercially available 1200 V SiC JFET power modules with ultra-low RDSON in parallel to achieve sub-mΩ total on-resistance, comparable to the incumbent mechanical contactor solution. This allows the total nominal conduction power loss of the BSM to be less than merely 23 W, permitting maintenance-free passive cooling. In contrast to the incumbent contactor solution, the BSM has ultrafast response (µs-level) to a fault condition. Which, in conjunction with the reduced fault current stress, significantly improves the operation lifetime of the entire system. The BSM incorporates various intelligent features by implementing a tri-mode operation concept, which allows to pre-charge the DC-link capacitor with a limited charging current in PWM mode. To mitigate single-point failures, several design redundancy measures are implemented to ensure reliability and safety for the aircraft. Design considerations of the circuit and physical design of the BSM are discussed in detail including the design of the custom laminated busbar and thermal analysis. Furthermore, the inherent uncontrolled oscillation phenomenon of the JFET cascode structure is explored and addressed. Finally, the experimental results obtained from the built and tested prototype of the BSM are reported.
Show less
- Title
- Examining Associations Between Discrimination, Social Cohesion, and Health among White and POC LGBT Chicagoans
- Creator
- Kannout, Lynn
- Date
- 2022
- Description
-
Consistent with the minority stress perspective, lesbian/gay, bisexual, and transgender (LGBT) individuals on average report worse health than...
Show moreConsistent with the minority stress perspective, lesbian/gay, bisexual, and transgender (LGBT) individuals on average report worse health than heterosexual individuals in several domains, e.g., general health, mental health, physical health, and health care access. Intersectionality-based research shows that LGBT-POC are, on average, at even greater risk for adverse health outcomes compared to their White LGBT counterparts. Discrimination and social cohesion may be two mechanisms underlying these between- and within-group disparities, given their broader relations to health and their relatively high frequency within marginalized populations. This study used data from the Chicago Department of Public Health to examine broad health differences between LGBT White and LGBT-POC individuals, and to test specific mediations models in which social cohesion mediated links between discrimination and health. LGBT-POC reported experiencing worse general health, lower access to health care, more experiences of discrimination, and lower feelings of social cohesion than did White LGBT individuals. No mediation effects emerged, however there was a direct effect of experiencing discrimination on mental health distress. Further, discrimination exposure related inversely to feelings of social cohesion. Study strengths, limitations, and implications are discussed.
Show less