Search results
(1 - 1 of 1)
- Title
- Self-Reconfigurable Soft Robots Based on Boundary-Constrained Granular Swarms
- Creator
- Karimi, Mohammad Amin
- Date
- 2022
- Description
-
Unlike conventional robots, which consist of rigid bodies and linkages, soft robots are composed of compliant and flexible components and...
Show moreUnlike conventional robots, which consist of rigid bodies and linkages, soft robots are composed of compliant and flexible components and actuators. This distinction enables adaptive behaviors in response to unpredictable environments, like manipulating objects with a variety of shapes. As such, soft robots afford greater potential over traditional robots for safe human interaction.Despite these advantages, there remain obstacles due to the challenges in modeling, controlling, and fabricating soft materials. For example, soft robots that rely on thermal or electrical actuation are typically slow to respond and unable to apply large forces as compared to traditional robots. Pneumatically actuated soft robots, while more responsive and capable of applying larger forces, generally need to be tethered to external control mechanisms, which becomes limiting in tasks that require lightweight, autonomous functionality.In contrast, this thesis describes a new type of robot that exhibits those same characteristics, but achieves them via a boundary-constrained swarm.The robotic structure consists of passive granular material surrounded by an active membrane that is composed of a swarm of interconnected robotic sub-units. The internal components are important for overall function, but their relative configuration is not. This allows for an effectively random, unstructured placement of the internal components, which in turn creates excellent morphability. Collectively, the subunits determine the overall shape of the robot and enable locomotion through interaction with external surfaces.The constrained swarm embodies the continuum, compliant, and configurable properties found in soft robots, but in this state the robot is limited in its ability to manipulate objects due to the relatively low force it can apply to external objects.To address this issue, the unique ability to execute a jamming phase transition is added to the robot. Importantly, jamming is controlled by the degree by which the passive particles are spatially confined by the membrane, and this in turn is controlled by the active sub-unit robots using different jamming mechanisms. The robot exploits its ability to transition between soft (unjammed) and rigid (jammed) states to induce fluid-like flexibility or solid-like rigidity in response to objects and features in the environment.In order to investigate this design concept, I have studied different prototype designs for the robot that varied in terms of the locomotion and jamming mechanisms. I also present a simulation framework in which I model the design and study the scalability of this class of robots. The simulation framework uses the Project Chrono platform, which is a multi-body dynamics library that allows for physics-driven collision and contact modeling.
Show less