Search results
(1 - 1 of 1)
- Title
- Evaluating the Impact of Residential Indoor Air Quality and Ventilation and Filtration Interventions on Adult Asthma-Related Health Outcomes in Chicago, IL
- Creator
- Kang, Insung
- Date
- 2022
- Description
-
Human exposure to a variety of airborne pollutants is associated with various adverse health effects, ranging from respiratory symptoms to...
Show moreHuman exposure to a variety of airborne pollutants is associated with various adverse health effects, ranging from respiratory symptoms to exacerbation of chronic diseases to cardiovascular disease and cancer. While most of our knowledge of the adverse impacts of air pollution comes from studies utilizing outdoor air pollutants as surrogates for exposure, people spend most of their time indoors, especially at home, where pollutant concentrations are often higher than outdoors. And within homes, mechanical ventilation systems and filtration are increasingly recommended to provide fresh air for ventilation and dilute indoor pollutant sources. There are a variety of ventilation system types that can be used for home retrofits; however, there is limited information on how they affect indoor air quality (IAQ) from both indoor and outdoor sources and how they influence occupant health and well-being. Therefore, to fill some of these knowledge gaps, this research aims to evaluate the effects of indoor air quality broadly, as well as interventions with three common types of residential mechanical ventilation system retrofits (i.e., continuous exhaust-only, intermittent fan-integrated supply, and continuous balanced systems with energy recovery ventilators), on asthma-related health outcomes in a cohort of adults in Chicago, IL. The key findings of this dissertation indicate that exposures to indoor NO2 and PM, higher indoor temperature, and mold/dampness were associated with poorer asthma control. The home ventilation and air filtration interventions, regardless of ventilation system type, significantly improved asthma control of the study population (~4% increase in ACT score; p < 0.001), and led to reductions in indoor concentrations of formaldehyde (HCHO) (-19.5 ppb; -63%; p < 0.001), carbon dioxide (CO2) (-120 ppm; -15%; p < 0.001), nitrogen dioxide (NO2) (-1.8 ppb; -3%; p = 0.035), and particulate matter (PM), including PM1 (-4.9 µg/m3; -43%; p = 0.001), PM2.5 (-4.9 µg/m3; -39%; p = 0.003), and PM10 (-6.2 µg/m3; -41%; p = 0.003). Additionally, asthma control was significantly improved in all subgroups: participants who received both ventilation and filtration interventions (~6% increase in ACT score; p < 0.001); continuous exhaust-only systems (~3% increase in ACT score; p = 0.033); intermittent central-fan-integrated-supply (CFIS) systems (~3% increase in ACT score; p = 0.018); and continuous balanced systems with an energy recovery ventilator (ERV) (~7% increase in ACT score; p < 0.001). Indoor CO2 concentrations were significantly reduced in homes with continuous ventilation systems, including exhaust-only (-165 ppm, -20%; p = 0.005) and balanced ERV systems (-186 ppm, -23%; p = 0.004), while indoor particulate matter (PM1, PM2.5, and PM10) concentrations were significantly reduced in homes with ventilation systems with filtration upgrades, including CFIS (PM1: -5.3 µg/m3, -46%; PM2.5: -5.0 µg/m3, -39%; and PM10: -6.2 µg/m3, -41%; all p < 0.05) and balanced ERV systems (PM1: -7.5 µg/m3, -59%; PM2.5: -8.3 µg/m3, -58%; and PM10: -10.4 µg/m3, -61%; all p < 0.05). Last, results of a cost-benefit analysis (CBA) of the three types of mechanical ventilation systems over an assumed 10-year life span, which predicted impacts on mortality and asthma outcomes based on measured impacts on two indoor pollutants – PM2.5 and NO2 – relative to initial and operational costs, as well as filtration upgrade costs, suggest that the intermittent CFIS system with improved MERV 10 filtration was the most beneficial approach, with the central benefit-cost ratio (BCR) of 6.0, followed by the continuous balanced ERV system (central BCR = 3.7) and exhaust-only system (central BCR = 3.2). This dissertation provides the first known empirical data in the U.S. on asthma outcomes associated with different types of mechanical ventilation systems that have highly varying impacts on indoor pollutant concentrations of both indoor and outdoor origin and environmental conditions. Results are also expected to provide much-needed guidance to homeowners, contractors, builders, and agencies on the advantages and disadvantages of different types of residential mechanical ventilation systems.
Show less