To enhance the cyber-resilience and security of the smart grid against malicious attacks and system errors, we present software-defined... Show moreTo enhance the cyber-resilience and security of the smart grid against malicious attacks and system errors, we present software-defined networking (SDN)-based communication architecture design for smart grid operation. Our design utilizes SDN technology, which improves network manageability, and provides application-oriented visibility and direct programmability, to deploy the multiple SDN-aware applications to enhance grid security and resilience including optimization-based network management to recover Phasor Measurement Unit (PMU) network connectivity and restore power system observability; Flow-based anomaly detection and optimization-based network management to mitigate Manipulation of demand of IoT (MadIoT) attack. We also developed a prototype system in a cyber-physical testbed and conducted extensive evaluation experiments using the IEEE 30-bus system, IEEE 118-bus system, and IIT campus microgrid. Show less