Search results
(1 - 2 of 2)
- Title
- Predictive energy efficient control framework for connected and automated vehicles in heterogeneous traffic environments
- Creator
- Vellamattathil Baby, Tinu
- Date
- 2023
- Description
-
Within the automotive industry, there is a significant emphasis on enhancing fuel efficiency and mobility, and reducing emissions. In this...
Show moreWithin the automotive industry, there is a significant emphasis on enhancing fuel efficiency and mobility, and reducing emissions. In this context, connected and automated vehicles (CAVs) represent a significant advancement, as they can optimize their acceleration pattern to improve their fuel efficiency. However, when CAVs coexist with human-driven vehicles (HDVs) on the road, suboptimal conditions arise, which adversely affect the performance of CAVs. This research analyzes the automation capabilities of production vehicles to identify scenarios where their performance is suboptimal, and proposes a merge-aware modification of adaptive cruise control (ACC) method for highway merging situations. The proposed algorithm addresses the issue of sudden gap and velocity changes in relation to the preceding vehicle, thereby reducing substantial braking during merging events, resulting in improved energy efficiency. This research also presents a data-driven model for predicting the velocity and position of the preceding vehicle, as well as a robust model predictive control (MPC) strategy that optimizes fuel consumption while considering prediction inaccuracies. Another focus of this research is a novel suggestion-based control framework in interactive mixed traffic environments leveraging the emerging connectivity between vehicles and with infrastructure. It is based on MPC to optimize the fuel efficiency of CAVs in heterogeneous or mixed traffic environments (i.e., including both CAVs and HDVs). In this suggestion-based control framework, the CAVs are considered to provide non-binding velocity and lane change suggestions to the HDVs to follow to improve the fuel efficiency of both the CAVs and the HDVs. To achieve this, the host CAV must devise its own fuel-efficient control solution and determine the recommendations to convey to its preceding HDV. It is assumed that the CAVs can communicate with the HDVs via Vehicle to Vehicle (V2V) communication, while the Signal Phase and Timing (SPaT) information is accessed via Vehicle-to- Infrastructure (V2I) communication. These velocity suggestions remain constant for a predefined period, allowing the driver to adjust their speed accordingly. It is also considered that the suggestions are non binding, i.e., a driver can choose not to follow the suggested velocity. For this control framework to function, we present a velocity prediction model based on experimental data that captures the response of a HDV to different suggested velocities, and a robust approach to ensure collision avoidance. The velocity prediction’s accuracy is also validated with the experimental data (on a table-top drive simulator), and the results are presented. In cases of low CAV penetration, a CAV needs to provide suggestions to multiple surrounding HDVs and incorporating the suggestions to all the HDVs as decision variables to the optimal control problem can be computationally expensive. Hence, a suggestion-based hierarchical energy efficient control framework is also proposed in which a CAV takes into account the interactive nature of the environment by jointly planning its own trajectory and evaluating the suggestions to the surrounding HDVs. Joint planning requires solving the problem in joint state- and action-space, and this research develops a Monte Carlo Tree Search (MCTS)-based trajectory planning approach for the CAV. Since the joint action- and state-space grows exponentially with the number of agents and can be computationally expensive, an adaptive action-space is proposed through pruning the action-space of each agent so that the actions resulting in unsafe trajectories are eliminated. The trajectory planning approach is followed by a low-level model predictive control (MPC)-based motion controller, which aims at tracking the reference trajectory in an optimal fashion. Simulation studies demonstrate the proposed control strategy’s efficacy compared to existing baseline methods.
Show less
- Title
- Predictive energy efficient control framework for connected and automated vehicles in heterogeneous traffic environments
- Creator
- Vellamattathil Baby, Tinu
- Date
- 2023
- Description
-
Within the automotive industry, there is a significant emphasis on enhancing fuel efficiency and mobility, and reducing emissions. In this...
Show moreWithin the automotive industry, there is a significant emphasis on enhancing fuel efficiency and mobility, and reducing emissions. In this context, connected and automated vehicles (CAVs) represent a significant advancement, as they can optimize their acceleration pattern to improve their fuel efficiency. However, when CAVs coexist with human-driven vehicles (HDVs) on the road, suboptimal conditions arise, which adversely affect the performance of CAVs. This research analyzes the automation capabilities of production vehicles to identify scenarios where their performance is suboptimal, and proposes a merge-aware modification of adaptive cruise control (ACC) method for highway merging situations. The proposed algorithm addresses the issue of sudden gap and velocity changes in relation to the preceding vehicle, thereby reducing substantial braking during merging events, resulting in improved energy efficiency. This research also presents a data-driven model for predicting the velocity and position of the preceding vehicle, as well as a robust model predictive control (MPC) strategy that optimizes fuel consumption while considering prediction inaccuracies. Another focus of this research is a novel suggestion-based control framework in interactive mixed traffic environments leveraging the emerging connectivity between vehicles and with infrastructure. It is based on MPC to optimize the fuel efficiency of CAVs in heterogeneous or mixed traffic environments (i.e., including both CAVs and HDVs). In this suggestion-based control framework, the CAVs are considered to provide non-binding velocity and lane change suggestions to the HDVs to follow to improve the fuel efficiency of both the CAVs and the HDVs. To achieve this, the host CAV must devise its own fuel-efficient control solution and determine the recommendations to convey to its preceding HDV. It is assumed that the CAVs can communicate with the HDVs via Vehicle to Vehicle (V2V) communication, while the Signal Phase and Timing (SPaT) information is accessed via Vehicle-to- Infrastructure (V2I) communication. These velocity suggestions remain constant for a predefined period, allowing the driver to adjust their speed accordingly. It is also considered that the suggestions are non binding, i.e., a driver can choose not to follow the suggested velocity. For this control framework to function, we present a velocity prediction model based on experimental data that captures the response of a HDV to different suggested velocities, and a robust approach to ensure collision avoidance. The velocity prediction’s accuracy is also validated with the experimental data (on a table-top drive simulator), and the results are presented. In cases of low CAV penetration, a CAV needs to provide suggestions to multiple surrounding HDVs and incorporating the suggestions to all the HDVs as decision variables to the optimal control problem can be computationally expensive. Hence, a suggestion-based hierarchical energy efficient control framework is also proposed in which a CAV takes into account the interactive nature of the environment by jointly planning its own trajectory and evaluating the suggestions to the surrounding HDVs. Joint planning requires solving the problem in joint state- and action-space, and this research develops a Monte Carlo Tree Search (MCTS)-based trajectory planning approach for the CAV. Since the joint action- and state-space grows exponentially with the number of agents and can be computationally expensive, an adaptive action-space is proposed through pruning the action-space of each agent so that the actions resulting in unsafe trajectories are eliminated. The trajectory planning approach is followed by a low-level model predictive control (MPC)-based motion controller, which aims at tracking the reference trajectory in an optimal fashion. Simulation studies demonstrate the proposed control strategy’s efficacy compared to existing baseline methods.
Show less