Search results
(1 - 4 of 4)
- Title
- Geometry of Higher-Order Markov Chains, AS2012 Special Volume, part 1: This issue includes a second series of papers from talks, posters and collaborations resulting from and inspired by the Algebraic Statistics in the Alleghenies Conference at Penn State, which took place in July 2012.
- Creator
- Sturmfels, Bernd
- Date
- 2012, 2012
- Description
-
We determine an explicit Gr ?obner basis, consisting of linear forms and determinantal quadrics, for the prime ideal of Raftery’s mixture...
Show moreWe determine an explicit Gr ?obner basis, consisting of linear forms and determinantal quadrics, for the prime ideal of Raftery’s mixture transition distribution model for Markov chains. When the states are binary, the corresponding projective variety is a linear space, the model itself consists of two simplices in a cross-polytope, and the likelihood function typically has two local maxima. In the general non-binary case, the model corresponds to a cone over a Segre variety.
Show less - Collection
- Journal of Algebraic Statistics
- Title
- Maximum Likelihood for Matrices with Rank Constraints
- Creator
- Hauenstein, Jonathan, Rodriguez, Jose Israel, Sturmfels, Bernd
- Date
- 2014, 2014-04-30
- Description
-
Maximum likelihood estimation is a fundamental optimization problem in statistics. We study this problem on manifolds of matrices with bounded...
Show moreMaximum likelihood estimation is a fundamental optimization problem in statistics. We study this problem on manifolds of matrices with bounded rank. These represent mixtures of distributions of two independent discrete random variables. We determine the maximum likelihood degree for a range of determinantal varieties, and we apply numerical algebraic geometry to compute all critical points of their likelihood functions. This led to the discovery of maximum likelihood duality between matrices of complementary ranks, a result proved subsequently by Draisma and Rodriguez.
Show less - Collection
- Journal of Algebraic Statistics
- Title
- A Family of Quasisymmetry Models
- Creator
- Kateri, Maria, Mohammadi, Fatemeh, Sturmfels, Bernd
- Date
- 2015, 2015-06-11
- Description
-
We present a one-parameter family of models for square contingency tables that interpolates between the classical quasisymmetry model and its...
Show moreWe present a one-parameter family of models for square contingency tables that interpolates between the classical quasisymmetry model and its Pearsonian analogue. Algebraically, this corresponds to deformations of toric ideals associated with graphs. Our discussion of the statistical issues centers around maximum likelihood estimation.
Show less - Collection
- Journal of Algebraic Statistics
- Title
- Moment Varieties of Gaussian Mixtures, AS2015 Special Issue articles: This issue includes a series of papers from talks, posters and collaborations resulting from and inspired by the Algebraic Statistics Conference held in Genoa, Italy, in June 2015. Special issue guest editors: Piotr Zwiernik and Fabio Rapallo.
- Creator
- Améndola, Carlos, Faugère, Jean-Charles, Sturmfels, Bernd
- Date
- 2016, 2016-07-12
- Description
-
The points of a moment variety are the vectors of all moments up to some order, for a given family of probability distributions. We study the...
Show moreThe points of a moment variety are the vectors of all moments up to some order, for a given family of probability distributions. We study the moment varieties for mixtures of multivariate Gaussians. Following up on Pearson’s classical work from 1894, we apply current tools from computational algebra to recover the parameters from the moments. Our moment varieties extend objects familiar to algebraic geometers. For instance, the secant varieties of Veronese varieties are the loci obtained by setting all covariance matrices to zero. We compute the ideals of the 5-dimensional moment varieties representing mixtures of two univariate Gaussians, and we offer a comparison to the maximum likelihood approach.
Show less - Collection
- Journal of Algebraic Statistics