Vascularization within biomaterial scaffolds is essential for engineered tissues. A sintering method is investigated in which spherical 106... Show moreVascularization within biomaterial scaffolds is essential for engineered tissues. A sintering method is investigated in which spherical 106-125 micron poly(methyl methacrylate) (PMMA) microspheres are used to create porous poly(ethylene glycol diacrylate) (PEGDA) hydrogels with varying interconnectivity for vascularized tissue invasion. The sintering method resulting in interconnectivity levels that increased with sintering time and temperature. Mechanical testing on hydrogels showed increasing interconnectivity of hydrogels decreases the elastic modulus. A rodent subcutaneous model was used to evaluate influence of hydrogel interconnectivity on in vivo response at 3 and 6 weeks. There was significant difference in tissue invasion between the groups at the two different time points. At week 3, higher interconnectivity hydrogels had twice as much invasion depth compared with the lower interconnectivity. The higher interconnectivity hydrogels had complete vascularization at 3 weeks. In conclusion, a technique for preparation of porous hydrogels with controlled pore interconnectivity has been developed and evaluated. This method has been used to show that higher interconnectivity enables deeper vascularized tissue ingrowth and thus holds great potential for tissue engineering applications. M.S. in Chemical Engineering, May 2014 Show less