The world today has seen an exponential increase in its usage of computers for communication and measurement. Thanks to recent technologies,... Show moreThe world today has seen an exponential increase in its usage of computers for communication and measurement. Thanks to recent technologies, we are now able to collect more data than ever before. This has dawned a new age of data-driven methods which can describe systems and behaviors with increasing accuracy. Whereas before we relied on the expertise of a few professionals with domain-specific knowledge developed over years of rigorous study, we are now able to rely on collected data to reveal patterns, develop novel ideas, and offer solutions to the world’s engineering problems. No domain is safe. Within the engineering realm, data-driven methods have seen vast usage in the areas of control and system identification. In this thesis we explore two areas of data-driven methods, namely reinforcement learning and data-driven causality. Reinforcement learning is a method by which an agent learns to increase its selection of ideal actions and behaviors which result in an increasing reward. This method was applied to a soft-robotic concept called the JAMoEBA to solve various tasks of interest in the robotics community, specifically tunnel navigation, obstacle field navigation, and object manipulation. A validation study was conducted to show the complications that arise when applying reinforcement learning to such a complex system. Nevertheless, it was shown that reinforcement learning is capable of solving three key tasks (static tunnel navigation, obstacle field navigation, and object manipulation) using specific simulation and learning hyperparameters. Data-driven causality encompasses a range of metrics and methods which attempt to uncover causal relationships between variables in a system. Several information theoretic causal metrics were developed and applied to nine mode turbulent flow data set which represents the Moehlis model. It was shown that careful consideration into the method used was required to identify significant causal relationships. Causal relationships were shown to converge over several hundred realizations of the turbulent model. Furthermore, these results match the expected causal relationships given known information of self-sustaining processes in turbulence, validating the method’s ability to identify causal relationships in turbulence. Show less