The adoption of wide bandgap (WBG) power semiconductors can improve the performance of power converters at the expense of significantly higher... Show moreThe adoption of wide bandgap (WBG) power semiconductors can improve the performance of power converters at the expense of significantly higher cost than Si at present time. In this thesis, an innovative Wide bandgap Fractional Power Processing (WFPP) design concept is introduced where silicon devices process the base power at a low switching frequency (2kHz or lower) while WBG devices are judiciously used to process only a fraction of the total power at a much higher frequency (tens of kHz). WFPP inverter is a design concept that splits the power processing into a low frequency Si base power processor and a high-frequency WBG fractional power processor. WBG devices are therefore judiciously used to process only a fraction of the total power to achieve both high-efficiency and lower cost than a full-WBG converter design. This thesis investigates an optimization strategy to minimize the total power loss while maintaining a reasonable THD and cost for a hybrid inverter design with comprehensive power loss analysis and calculation on fundamental and harmonics currents. Optimal selection of power sharing between the Si and WBG inverters and switching frequency are discussed in the thesis. The circulating current paths in topology with hybrid switching frequencies are also analyzed and presented in this thesis. Experimental results on a 9kW SiC/Si hybrid inverter prototype with isolated and non-isolated DC power supplies are presented to validate the design concept. Show less