This dissertation presents a comprehensive investigation into the use of high-pressure reverse osmosis (HPRO) to desalinate produced water (PW... Show moreThis dissertation presents a comprehensive investigation into the use of high-pressure reverse osmosis (HPRO) to desalinate produced water (PW) in the oil and gas industry, with the aim of developing sustainable water management strategies. The study analyzes fouling mechanisms in HPRO desalination, revealing the applicability of Hermia's fouling mechanism to high-salinity waters and highlighting the negligible impact of complete pore blocking and standard pore blocking in crossflow reverse osmosis (RO) desalination. Furthermore, the research investigates ion transport through commercial polyamide thin film composite membranes using the solution-friction model, elucidating the influence of factors such as pressure, temperature, and crossflow velocity on the initial flux while minimal impact on steady-state flux is observed. The assessment of oil and gas waste discharge in water systems provides insights into potential environmental consequences, and the analysis of the behavior of per- and polyfluoroalkyl substances (PFAS) in contaminated sediments using passive sampling demonstrates the rapid uptake of shorter-chain PFAS compounds due to their lower sorption potential and faster diffusion rates. The dissertation contributes to the development of sustainable water management strategies, addressing the challenges of produced water treatment and environmental contamination in the oil and gas industry, and offers valuable information on fouling mechanisms, impacts of ion transport mechanisms, waste discharge and PFAS behavior, enabling optimized desalination processes, informed waste management practices, and a better understanding of environmental contamination issues. Show less