Search results
(1 - 3 of 3)
- Title
- Integrity based landmark generation: A method to generate landmark configurations that guarantee mobile robot localization safety
- Creator
- Chen, Yihe
- Date
- 2020
- Description
-
From the bronze-age city Nineveh to the modern metropolitan like Tokyo, traffic shape cities and profoundly affect the life of people. Similar...
Show moreFrom the bronze-age city Nineveh to the modern metropolitan like Tokyo, traffic shape cities and profoundly affect the life of people. Similar to how the wide-spreading of automobile had modified the modern cities in early 20th century, we are now standing on the eve of yet another traffic revolution. With the vast spreading of autonomous/semi- autonomous robotics application, it is important for the urban designers to design or retrofit urban environment that is safe and friendly to the autonomous robots; As more robots are deployed in life-critical situations, such as autonomous passenger vehicles, it is imperative to consider their safety, and in particular, their localization safety. While it would be ideal to guarantee safety in any environment without having to physically modify said environment, this is not always possible and one may have add landmarks or active beacons to reach an acceptable level of safety for landmark-based localization. Localization safety is assessed using integrity, the primary safety metric used in open-sky aviation applications that has been recently applied to mobile robots and can ac- count for the impact of rarely occurring, undetected faults. Conventional integrity monitor- ing method has high dependency on GPS system, while the traditional Global Navigation Satellite System - Inertia Measurement Unit (GNSS-IMU) based localization does not ap- plied in the metropolitan areas due to the signal blocking and multi-pathing problem caused by high-rise structures. Thus, this dissertation concentrates on the feature based integrity monitoring method. This dissertation formulates environmental localization safety problem as a system- atic optimization problem: given the robot’s trajectory and the current landmark map, add the minimal number of new landmarks at certain location such that the integrity risk along the trajectory is below a given safety threshold. This dissertation proposes two algorithms to solve the problem: Integrity-based Landmark Generator (I-LaG) and Fast I-LaG. I-LaG adds fewer landmarks but it is relatively computationally expensive; Fast I-LaG is less com- putationally intensive at the expense of more landmarks. Both simulation and experimental results are presented.
Show less
- Title
- Improving Localization Safety for Landmark-Based LiDAR Localization System
- Creator
- Chen, Yihe
- Date
- 2024
- Description
-
Autonomous ground robots have gained traction in various commercial applications, with established safety protocols covering subsystem...
Show moreAutonomous ground robots have gained traction in various commercial applications, with established safety protocols covering subsystem reliability, control algorithm stability, path planning, and localization. This thesis specifically delves into the localizer, a critical component responsible for determining the vehicle’s state (e.g., position and orientation), assessing compliance with localization safety requirements, and proposing methods for enhancing localization safety.Within the robotics domain, diverse localizers are utilized, such as scan-matching techniques like normal distribution transformations (NDT), the iterative closest point (ICP) algorithm,probabilistic maps method, and semantic map-based localization.Notably, NDT stands out as a widely adopted standalone laser localization method, prevalent in autonomous driving software such as Autoware and Apollo platforms.In addition to the mentioned localizers, common state estimators include variants of Kalman Filter, particle filter-based, and factor graph-based estimators. The evaluation of localization performance typically involves quantifying the estimated state variance for these state estimators.While various localizer options exist, this study focuses on those utilizing extended Kalman filters and factor graph methods. Unlike methods like NDT and ICP algorithms, extended Kalman filters and factor graph based approaches guarantee bounding of estimated state uncertainty and have been extensively researched for integrity monitoring.Common variance analysis, employed for sensor readings and state estimators, has limitations, primarily focusing on non-faulted scenarios under nominal conditions. This approach proves impractical for real-world scenarios and falls short for safety-critical applications like autonomous vehicles (AVs).To overcome these limitations, this thesis utilizes a dedicated safety metric: integrity risk. Integrity risk assesses the reliability of a robot’s sensory readings and localization algorithm performance under both faulted and non-faulted conditions. With a proven track record in aviation, integrity risk has recently been applied to robotics applications, particularly for evaluating the safety of lidar localization.Despite the significance of improving localization integrity risk through laser landmark manipulation, this remains an under explored territory. Existing research on robot integrity risk primarily focuses on the vehicles themselves. To comprehensively understand the integrity risk of a lidar-based localization system, as addressed in this thesis, an exploration of lidar measurement faults’ modes is essential, a topic covered in this thesis.The primary contributions of this thesis include: A realistic error estimation method for state estimators in autonomous vehicles navigating using pole-shape lidar landmark maps, along with a compensatory method; A method for quantifying the risk associated with unmapped associations in urban environments, enhancing the realism of values provided by the integrity risk estimator; a novel approach to improve the localization integrity of autonomous vehicles equipped with lidar feature extractors in urban environments through minimal environmental modifications, mitigating the impact of unmapped association faults. Simulation results and experimental results are presented and discussed to illustrate the impact of each method, providing further insights into their contributions to localization safety.
Show less
- Title
- Improving Localization Safety for Landmark-Based LiDAR Localization System
- Creator
- Chen, Yihe
- Date
- 2024
- Description
-
Autonomous ground robots have gained traction in various commercial applications, with established safety protocols covering subsystem...
Show moreAutonomous ground robots have gained traction in various commercial applications, with established safety protocols covering subsystem reliability, control algorithm stability, path planning, and localization. This thesis specifically delves into the localizer, a critical component responsible for determining the vehicle’s state (e.g., position and orientation), assessing compliance with localization safety requirements, and proposing methods for enhancing localization safety.Within the robotics domain, diverse localizers are utilized, such as scan-matching techniques like normal distribution transformations (NDT), the iterative closest point (ICP) algorithm,probabilistic maps method, and semantic map-based localization.Notably, NDT stands out as a widely adopted standalone laser localization method, prevalent in autonomous driving software such as Autoware and Apollo platforms.In addition to the mentioned localizers, common state estimators include variants of Kalman Filter, particle filter-based, and factor graph-based estimators. The evaluation of localization performance typically involves quantifying the estimated state variance for these state estimators.While various localizer options exist, this study focuses on those utilizing extended Kalman filters and factor graph methods. Unlike methods like NDT and ICP algorithms, extended Kalman filters and factor graph based approaches guarantee bounding of estimated state uncertainty and have been extensively researched for integrity monitoring.Common variance analysis, employed for sensor readings and state estimators, has limitations, primarily focusing on non-faulted scenarios under nominal conditions. This approach proves impractical for real-world scenarios and falls short for safety-critical applications like autonomous vehicles (AVs).To overcome these limitations, this thesis utilizes a dedicated safety metric: integrity risk. Integrity risk assesses the reliability of a robot’s sensory readings and localization algorithm performance under both faulted and non-faulted conditions. With a proven track record in aviation, integrity risk has recently been applied to robotics applications, particularly for evaluating the safety of lidar localization.Despite the significance of improving localization integrity risk through laser landmark manipulation, this remains an under explored territory. Existing research on robot integrity risk primarily focuses on the vehicles themselves. To comprehensively understand the integrity risk of a lidar-based localization system, as addressed in this thesis, an exploration of lidar measurement faults’ modes is essential, a topic covered in this thesis.The primary contributions of this thesis include: A realistic error estimation method for state estimators in autonomous vehicles navigating using pole-shape lidar landmark maps, along with a compensatory method; A method for quantifying the risk associated with unmapped associations in urban environments, enhancing the realism of values provided by the integrity risk estimator; a novel approach to improve the localization integrity of autonomous vehicles equipped with lidar feature extractors in urban environments through minimal environmental modifications, mitigating the impact of unmapped association faults. Simulation results and experimental results are presented and discussed to illustrate the impact of each method, providing further insights into their contributions to localization safety.
Show less