Search results
(1 - 2 of 2)
- Title
- Parking Demand Forecasting Using Asymmetric Discrete Choice Models with Applications
- Creator
- Zhang, Ji
- Date
- 2023
- Description
-
Using discrete choice models to forecast travelers parking location choice has been a branch of parking demand research for many years. The...
Show moreUsing discrete choice models to forecast travelers parking location choice has been a branch of parking demand research for many years. The most used discrete choice models have fairly simple mathematical expressions, such as the probit and logit models. The application of simple models helps release the computational burdens brought by parameter estimation tasks in practice, but the cost is the unwanted properties of classic models such as the “symmetry property” that we argue is often undesirable in many fields. To some extent, the symmetry property of related models limits the shape of curves that makes the model fitting less flexible technically. This study addresses the following question: “Can discrete choice models with asymmetry property outperform classic models with symmetry property in forecasting travelers’ parking location choices?” The contributions of this study include: (1) providing a new perspective of using asymmetric discrete choice models to explain and forecast individual’s parking location choice; and (2) completing the travel demand forecasting process from choices of the destination zone centroid to the parking location, enabling parking choice forecasting. This provides a generalized framework to calibrate and validate asymmetric discrete choice models with the field observed parking facility-specific arrival profile data integrated into a large-scale, high-fidelity regional travel demand model. Further, an experimental study is conducted to compare the performance of the proposed asymmetric discrete choice models in the parking demand forecasting framework. The results suggest that asymmetric discrete choice models for individual’s parking choice modeling outperform the symmetric discrete choice models such as the logit models owing largely to their flexibility of parameter fitting and training using the available dataset.
Show less
- Title
- Parking Demand Forecasting Using Asymmetric Discrete Choice Models with Applications
- Creator
- Zhang, Ji
- Date
- 2023
- Description
-
Using discrete choice models to forecast travelers parking location choice has been a branch of parking demand research for many years. The...
Show moreUsing discrete choice models to forecast travelers parking location choice has been a branch of parking demand research for many years. The most used discrete choice models have fairly simple mathematical expressions, such as the probit and logit models. The application of simple models helps release the computational burdens brought by parameter estimation tasks in practice, but the cost is the unwanted properties of classic models such as the “symmetry property” that we argue is often undesirable in many fields. To some extent, the symmetry property of related models limits the shape of curves that makes the model fitting less flexible technically. This study addresses the following question: “Can discrete choice models with asymmetry property outperform classic models with symmetry property in forecasting travelers’ parking location choices?” The contributions of this study include: (1) providing a new perspective of using asymmetric discrete choice models to explain and forecast individual’s parking location choice; and (2) completing the travel demand forecasting process from choices of the destination zone centroid to the parking location, enabling parking choice forecasting. This provides a generalized framework to calibrate and validate asymmetric discrete choice models with the field observed parking facility-specific arrival profile data integrated into a large-scale, high-fidelity regional travel demand model. Further, an experimental study is conducted to compare the performance of the proposed asymmetric discrete choice models in the parking demand forecasting framework. The results suggest that asymmetric discrete choice models for individual’s parking choice modeling outperform the symmetric discrete choice models such as the logit models owing largely to their flexibility of parameter fitting and training using the available dataset.
Show less