Search results
(1 - 1 of 1)
- Title
- Development of a novel ultra-nanocrystalline diamond (UNCD) based photocathode and exploration of its emission mechanisms
- Creator
- Chen, Gongxiaohui
- Date
- 2020
- Description
-
High quality electron sources are one of the most commonly used probing tools used for the study of materials. Photoemission cathodes, capable...
Show moreHigh quality electron sources are one of the most commonly used probing tools used for the study of materials. Photoemission cathodes, capable of producing ultra-short and ultra-high intensity beams, are a key component of accelerator based light sources and some microscopy tools. High quantum efficiency (QE), low intrinsic emittance, and long lifetime (or good vacuum tolerance) are three of the most critical features for a photocathode; however, these are difficult to achieve simultaneously and trade-offs need to be made for different applications. In this work, a novel semi-metallic material of nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) has been studied as a photocathode. (N)UNCD has many of the unique diamond properties, such as low intrinsic as-grown surface roughness (at the order of 10~nm) due to its nanometer scale crystalline size, relatively long lifetime in air, high electrical conductivity with nitrogen doping, and potentially high QE performance due to the high grain boundary densities where most of electron emission occurs. High contrast interference of incident and reflected radiation within (N)UNCD thin films was observed, and this feature allows fast thickness determination based on an analytical optics methodology. This method has been extended to study and calculate the etching rates of two commonly used O$_2$ and H$_2$ plasmas for use with future (N)UNCD microfabrication processes. The mean transverse energy (MTE) of (N)UNCD was determined over a wide UV range in a DC photogun. Unique MTE behavior was observed; it did not scale with photon energy unlike most metals. This behavior is associated with emission from spatially-confined states in the graphite regions (with low electron effective mass) between the diamond grains. Such behavior suggests that beam brightness many be increased by the simple mechanism of increasing the photon energy so that the QE increases, while the MTE remains constant.Two individual (N)UNCD photocathodes synthesized two years apart have been characterized in a realistic RF photogun. Both the QE and intrinsic emittance were characterized. It was found that the QE of $\sim4.0\times 10^{-4}$, is more than an order of magnitude higher than that of most commonly used metal cathodes (such as Cu and Nb). The intrinsic emittance (0.997~$\mu$m/mm) is comparable to that of photocathodes now deployed in research accelerators. The most impressive feature is the excellent robustness of (N)UNCD material; there was no evidence of performance degradation, even after years-long atmospheric exposure. The results of this work demonstrate that a cathode made of (N)UNCD material is able to achieve balanced performance of three of the primary critical photocathode figures-of-merit.
Show less