In the last few decades, atomic layer deposition (ALD), as a vapor deposition technique and a powerful thin film fabrication method, has... Show moreIn the last few decades, atomic layer deposition (ALD), as a vapor deposition technique and a powerful thin film fabrication method, has received more and more attention in many fields. A variety of materials can be made by ALD; however, the progress of ALD application is still necessary. Meanwhile, in the process of film fabrication by ALD, the interfacial chemistry is interesting and well worth studying. This dissertation mainly described the process of exploring two materials, gold and tungsten disulfide, fabrication and related content.For the portion of applying ALD in gold thin film deposition, a relatively comprehensive process was explored, studied, analyzed and discussed. Start with the synthesis of the gold precursor, Me2Au(S2CNEt2), the synthetic reaction was explored. By modified the conditions, such as solvent system, twice the yield as previously reported in the literature were achieved. Next, the application of in situ microbalance and infrared spectroscopic technique illuminate the organometallic chemistry during the gold thermal ALD process with Me2Au(S2CNEt2) and ozone. In situ quartz crystal microbalance (QCM) studies give an explanation for the nucleation delay and island growth of gold on a freshly prepared aluminum oxide surface. In situ infrared spectroscopy provides insight to study the surface chemistry during the process, which supports an oxidized gold surface mechanism. The epitaxy of gold thin film was explored by X-ray diffraction. The thermal ALD gold on various substrates reveals out-of-plane orientation, however, in-plane orientation was only existed in the gold film on mica.
For the portion of applying ALD in tungsten disulfide fabrication, the early work started with studying the effect of interfaces upon crystallinity. The sulfuration of indium thin film with different interface was explored. Then the idea of “interfaces” was brought into the process of tungsten compounds fabrication. Due to this “indirect” method which made tungsten disulfide by sulfurizing ALD made tungsten compounds (eg. tungsten oxide and tungsten nitride) could not reduce the reaction temperature of tungsten disulfide synthesis to less than 400 °C. Sequently, the “direct” way of tungsten disulfide fabrication which directly utilized tungsten precursor and H2S in ALD system was tested and explored. With the tungsten precursors developed by our group, finally, tungsten disulfide could be fabricated at the temperature as low as 125 °C. Show less