Search results
(1 - 1 of 1)
- Title
- BLOCKCHAIN FOR TRANSACTIVE ENERGY MARKET WITH NETWORKED MICROGRIDS
- Creator
- Yan, Mingyu
- Date
- 2021
- Description
-
Transactive energy, which allows and incentivizes microgrids (MGs) to trade energy with each other, is regarded as the next-generation energy...
Show moreTransactive energy, which allows and incentivizes microgrids (MGs) to trade energy with each other, is regarded as the next-generation energy management scheme to accommodate the penetration of distributed energy resources (DERs). Blockchain provides an effective and decentralized strategy, which can address the operational challenges introduced by the transactive energy market. This thesis is aimed at providing effective transactive energy markets for incentivizing MGs to trade energy and utilizing blockchain technologies to provide a secure and efficient energy trading environment for all participants.First, this thesis offers a centralized transactive market for networked MGs to transact energy through the centralized distribution system operator (DSO) while ensuring the power network limits. All MGs cooperate in this market and the cooperative behaviors are captured using the cooperative game with externalities. A two-level problem is studied to allocate the total payoff to all participating MGs. Numerical results for a 4-MG system and the IEEE 33-bus show the validity of the centralized transactive energy model. Second, this thesis proposes a two-level network-constrained peer-to-peer (P2P) transactive energy for multi-MGs, which guarantees the distribution power network security and allows MGs to trade energy with each other flexibly. At the lower level, a P2P transactive energy is employed for multi-MGs to trade energy with each other. A multi-leader multi-follower (MLMF) Stackelberg game approach is utilized to model the energy trading process among MGs. At the upper level, the DSO reconfigures the distribution network based on the P2P transactive energy trading results by applying the AC optimal power flow considering the distribution network reconfiguration. If there are any network violations, the DSO requests energy trading adjustments at the lower level for network security. Numerical results for a 4-MG system, the modified IEEE 33-bus, and the 123-bus distribution power systems show the effectiveness of the proposed transactive energy model and its solution technique. Third, this thesis adopts the blockchain for the peer-to-peer transactive energy market among MGs. A two-level integrated blockchain-power system is provided, in which all MGs and the DSO are equipped with blockchain. At the lower level, MGs trade energy with each other through the lower-level MG blockchain, while the DSO manages the network security through the upper level DSO blockchain. We illustrate how to utilize blockchain technologies, i.e., public and private keys and smart contracts, to provide an efficient and secure energy trading environment for all MGs. Last, this thesis applies the blockchain for transacting energy and carbon right for networked MGs. MGs transact energy and carbon right through the centralized DSO while ensuring the power network limits. The introduction of blockchain achieves secure and decentralized market settlements in this centralized market. Numerical results for a 4-MG system and modified IEEE 33-bus systems show the effectiveness of the proposed transactive energy and carbon market.
Show less