Diabetic retinopathy, which is the most common reason for blindness in the working-age population, affects over one-third of those who have... Show moreDiabetic retinopathy, which is the most common reason for blindness in the working-age population, affects over one-third of those who have had diabetes for over ten years. High blood sugar level (hyperglycemia) in the blood damages blood vessels and tight junction at the blood-retinal barrier (BRB). Chronic inflammation leads to changes in vascular health, and over time blood vessels tend to get damaged and exhibit higher “leakage” or permeability. In the late stage of DR, hemorrhages can occur, leading to irreversible damage of neuronal tissue in the retina and vision loss. In the clinic, there are some biomarkers and imaging modalities used to diagnose DR based on some of the more severe products of DR (e.g., hemorrhage), but there is no non-invasive, highly sensitive method to detect diabetic retinopathy before clinical signs occur, when mitigating therapies could be more effective. In this thesis, indicator dilution theory was explored to modeling the temporal dynamics of fluorescein in the retina after intravenous injection, with an aim to quantitatively map subtle changes in retinal blood flow and vascular permeability that could preempt subsequent irreversible damage. Specifically, a simplified version of indicator dilution theory—namely the “adiabatic approximation in tissue homogeneity” (AATH) model—was used to estimate physiological parameters such as the blood flow (F) and the extraction fraction (E: a parameter coupled with vascular permeability) from retinal fluorescein videoangiography data. The AATH fitting protocol was optimized through simulations using a more complex model (the AATH-vascular heterogeneity model, AATH-VH). It was determined that a two-step least square fitting method was more sensitive than a single-step least square fitting of AATH to simulated data to evaluate vascular permeability in early diabetic retinopathy.
The optimized data analysis protocol was then evaluated in an initial clinical study comparing healthy control subjects to those with moderate non-proliferative DR. Volumetric blood flow and retinal vascular permeability maps were compared between patient groups with clear increases in extraction fraction observed in the mild NPDR patients compared to control. These promising early data have been the foundation to an ongoing 5 year study tracking 100 Diabetic patients with no DR so see if early changes in vascular permeability can predict which patients are more likely to progress to DR. Show less