Search results
(1 - 5 of 5)
- Title
- Analysis of High-Fidelity Experiments and Simulations of the Flow in Simplified Urban Environments
- Creator
- Stuck, Maxime
- Date
- 2020
- Description
-
The mean flow and turbulence statistics of the flow through a simplified urban environment, which is an active research area in order to improve...
Show moreThe mean flow and turbulence statistics of the flow through a simplified urban environment, which is an active research area in order to improve the knowledge of turbulent flow in cities, is investigated. This is useful for civil engineering, pedestrian comfort and for health concerns caused by pollutant spreading. In this work, we provide analysis of the turbulence statistics obtained both from highly-quality stereoscopic particle image-velocimetry (SPIV) measurements (from Monnier et al.) and well-resolved large eddy simulations (LES) by Torres et al. A detailed comparison of both databases reveals the impact of the geometry of the urban array on the flow characteristics and provides for a good description of the turbulent features of the flow around a simplified urban environment. The most prominent features of this complex flow include coherent vortical structures such as the so-called arch vortex, the horseshoe vortex, or the roof vortex. These structures of the flow have been identified by an analysis of the turbulence statistics. The influence of the geometry of the urban environment (and particularly the street width and the building height) on the overall flow behavior has also been studied.
Show less
- Title
- Resolvent analysis of turbulent flows: Extensions, improvements and applications
- Creator
- Lopez-Doriga Costales, Barbara
- Date
- 2024
- Description
-
This thesis presents several advances in both physics-based and data-driven modeling of turbulent fluid flows. In particular, the present...
Show moreThis thesis presents several advances in both physics-based and data-driven modeling of turbulent fluid flows. In particular, the present thesis focuses on resolvent analysis, a physics-based framework that identifies the coherent structures that are most amplified by the Navier-Stokes equations when they are linearized about a known turbulent mean flow via a singular value decomposition (SVD) of a discretized operator. This method has proven to effectively capture energetically-relevant features observed in various flows. However, it has some shortcomings that the present work intends to alleviate. First, the original formulation of resolvent analysis is restricted to statistically-stationary or time-periodic mean flows. To expand the applicability of this framework, this thesis presents a spatiotemporal variant of resolvent analysis that is able to account for time-varying systems. Moreover, sparsity (which manifests in localization) is also incorporated to the analysis through the addition of an l1-norm penalization term to the optimization associated with the SVD. This allows for the identification of energetically-relevant coherent structures that correspond to spatio-temporally localized amplification mechanisms, for flows with either a time-varying or stationary mean. The high computational cost associated with the discretization and analysis of a large discretized of the mean-linearized Navier-Stokes operator represents the second drawback of resolvent analysis. As a second contribution, this thesis provides an analytic form of resolvent analysis for planar flows based on wavepacket pseudomode theory, avoiding the numerical computations required in the original framework. The third contribution focuses on the characterization of the energetically-dominant coherent structures that arise in turbulent flow traveling through straight ducts with square and rectangular cross-sections. First, resolvent analysis is applied to predict the coherent structures that arise in this flow, and to study the sensitivity of this methodology to the secondary mean flow components that display a distinct pattern near the duct corners. Next, a data-driven causality analysis is performed to understand the physical mechanisms involved in the evolution of coherent structures near the duct corners. To do this, a nonlinear Granger causality analysis method is developed and applied to proper orthogonal decomposition coefficients of direct numerical simulation data, revealing that the structures associated with the secondary velocity components are behind the formation and translation of the near-wall and near-corner streamwise structures. A general discussion and future prospects are discussed at the end of this thesis.
Show less
- Title
- Resolvent Analysis of Turbulent Flow over Compliant Surfaces: Optimization Methods and Stability Considerations.
- Creator
- Lapanderie, Kilian Pierre Lucien
- Date
- 2024
- Description
-
This thesis delves into the manipulation of turbulence properties through innovative compliant surface designs. Turbulence, known for its...
Show moreThis thesis delves into the manipulation of turbulence properties through innovative compliant surface designs. Turbulence, known for its unpredictable fluid movements, presents substantial challenges across engineering disciplines, particularly in optimizing system efficiency and minimizing energy losses. This research explores the potential of compliant surfaces to control and mitigate the adverse effects of turbulent flow, thereby enhancing the performance and reliability of engineering systems.Employing the resolvent analysis method, this work investigates the interaction between turbulent flows and surfaces capable of dynamic adaptation. The study evaluates the impact of these surfaces on turbulence suppression through the application of both space-dependent and independent compliance models, where the compliance model is characterised by an admittance, which represents the relationship between the instantaneous surface pressure and surface velocity. This approach allows for a nuanced understanding of how different surface properties can influence the behavior of turbulent flows.A significant contribution of this thesis is the comprehensive stability analysis conducted to assess the implications of compliant surfaces on the linear stability of the dynamical system. By examining the eigenvalues of the mean-linearized system, the research identifies the conditions under which compliant surfaces may induce or mitigate instabilities within turbulent flows. This analysis is pivotal in developing compliant surface designs that not only reduce turbulence-induced energy losses but also ensure the stability of the flow, a critical consideration for practical engineering applications.The findings of this thesis offer valuable insights into the role of surface compliance in turbulence control, paving the way for further research and the development of advanced engineering solutions. Through a detailed investigation of the interactions between compliant surfaces and turbulent flows, this work contributes to the broader field of fluid dynamics and underscores the potential of innovative surface designs in achieving more efficient and sustainable engineering systems.
Show less
- Title
- Resolvent analysis of turbulent flows: Extensions, improvements and applications
- Creator
- Lopez-Doriga Costales, Barbara
- Date
- 2024
- Description
-
This thesis presents several advances in both physics-based and data-driven modeling of turbulent fluid flows. In particular, the present...
Show moreThis thesis presents several advances in both physics-based and data-driven modeling of turbulent fluid flows. In particular, the present thesis focuses on resolvent analysis, a physics-based framework that identifies the coherent structures that are most amplified by the Navier-Stokes equations when they are linearized about a known turbulent mean flow via a singular value decomposition (SVD) of a discretized operator. This method has proven to effectively capture energetically-relevant features observed in various flows. However, it has some shortcomings that the present work intends to alleviate. First, the original formulation of resolvent analysis is restricted to statistically-stationary or time-periodic mean flows. To expand the applicability of this framework, this thesis presents a spatiotemporal variant of resolvent analysis that is able to account for time-varying systems. Moreover, sparsity (which manifests in localization) is also incorporated to the analysis through the addition of an l1-norm penalization term to the optimization associated with the SVD. This allows for the identification of energetically-relevant coherent structures that correspond to spatio-temporally localized amplification mechanisms, for flows with either a time-varying or stationary mean. The high computational cost associated with the discretization and analysis of a large discretized of the mean-linearized Navier-Stokes operator represents the second drawback of resolvent analysis. As a second contribution, this thesis provides an analytic form of resolvent analysis for planar flows based on wavepacket pseudomode theory, avoiding the numerical computations required in the original framework. The third contribution focuses on the characterization of the energetically-dominant coherent structures that arise in turbulent flow traveling through straight ducts with square and rectangular cross-sections. First, resolvent analysis is applied to predict the coherent structures that arise in this flow, and to study the sensitivity of this methodology to the secondary mean flow components that display a distinct pattern near the duct corners. Next, a data-driven causality analysis is performed to understand the physical mechanisms involved in the evolution of coherent structures near the duct corners. To do this, a nonlinear Granger causality analysis method is developed and applied to proper orthogonal decomposition coefficients of direct numerical simulation data, revealing that the structures associated with the secondary velocity components are behind the formation and translation of the near-wall and near-corner streamwise structures. A general discussion and future prospects are discussed at the end of this thesis.
Show less
- Title
- Resolvent Analysis of Turbulent Flow over Compliant Surfaces: Optimization Methods and Stability Considerations.
- Creator
- Lapanderie, Kilian Pierre Lucien
- Date
- 2024
- Description
-
This thesis delves into the manipulation of turbulence properties through innovative compliant surface designs. Turbulence, known for its...
Show moreThis thesis delves into the manipulation of turbulence properties through innovative compliant surface designs. Turbulence, known for its unpredictable fluid movements, presents substantial challenges across engineering disciplines, particularly in optimizing system efficiency and minimizing energy losses. This research explores the potential of compliant surfaces to control and mitigate the adverse effects of turbulent flow, thereby enhancing the performance and reliability of engineering systems.Employing the resolvent analysis method, this work investigates the interaction between turbulent flows and surfaces capable of dynamic adaptation. The study evaluates the impact of these surfaces on turbulence suppression through the application of both space-dependent and independent compliance models, where the compliance model is characterised by an admittance, which represents the relationship between the instantaneous surface pressure and surface velocity. This approach allows for a nuanced understanding of how different surface properties can influence the behavior of turbulent flows.A significant contribution of this thesis is the comprehensive stability analysis conducted to assess the implications of compliant surfaces on the linear stability of the dynamical system. By examining the eigenvalues of the mean-linearized system, the research identifies the conditions under which compliant surfaces may induce or mitigate instabilities within turbulent flows. This analysis is pivotal in developing compliant surface designs that not only reduce turbulence-induced energy losses but also ensure the stability of the flow, a critical consideration for practical engineering applications.The findings of this thesis offer valuable insights into the role of surface compliance in turbulence control, paving the way for further research and the development of advanced engineering solutions. Through a detailed investigation of the interactions between compliant surfaces and turbulent flows, this work contributes to the broader field of fluid dynamics and underscores the potential of innovative surface designs in achieving more efficient and sustainable engineering systems.
Show less