Search results
(1 - 2 of 2)
- Title
- BLOCKCHAIN FOR TRANSACTIVE ENERGY MARKET WITH NETWORKED MICROGRIDS
- Creator
- Yan, Mingyu
- Date
- 2021
- Description
-
Transactive energy, which allows and incentivizes microgrids (MGs) to trade energy with each other, is regarded as the next-generation energy...
Show moreTransactive energy, which allows and incentivizes microgrids (MGs) to trade energy with each other, is regarded as the next-generation energy management scheme to accommodate the penetration of distributed energy resources (DERs). Blockchain provides an effective and decentralized strategy, which can address the operational challenges introduced by the transactive energy market. This thesis is aimed at providing effective transactive energy markets for incentivizing MGs to trade energy and utilizing blockchain technologies to provide a secure and efficient energy trading environment for all participants.First, this thesis offers a centralized transactive market for networked MGs to transact energy through the centralized distribution system operator (DSO) while ensuring the power network limits. All MGs cooperate in this market and the cooperative behaviors are captured using the cooperative game with externalities. A two-level problem is studied to allocate the total payoff to all participating MGs. Numerical results for a 4-MG system and the IEEE 33-bus show the validity of the centralized transactive energy model. Second, this thesis proposes a two-level network-constrained peer-to-peer (P2P) transactive energy for multi-MGs, which guarantees the distribution power network security and allows MGs to trade energy with each other flexibly. At the lower level, a P2P transactive energy is employed for multi-MGs to trade energy with each other. A multi-leader multi-follower (MLMF) Stackelberg game approach is utilized to model the energy trading process among MGs. At the upper level, the DSO reconfigures the distribution network based on the P2P transactive energy trading results by applying the AC optimal power flow considering the distribution network reconfiguration. If there are any network violations, the DSO requests energy trading adjustments at the lower level for network security. Numerical results for a 4-MG system, the modified IEEE 33-bus, and the 123-bus distribution power systems show the effectiveness of the proposed transactive energy model and its solution technique. Third, this thesis adopts the blockchain for the peer-to-peer transactive energy market among MGs. A two-level integrated blockchain-power system is provided, in which all MGs and the DSO are equipped with blockchain. At the lower level, MGs trade energy with each other through the lower-level MG blockchain, while the DSO manages the network security through the upper level DSO blockchain. We illustrate how to utilize blockchain technologies, i.e., public and private keys and smart contracts, to provide an efficient and secure energy trading environment for all MGs. Last, this thesis applies the blockchain for transacting energy and carbon right for networked MGs. MGs transact energy and carbon right through the centralized DSO while ensuring the power network limits. The introduction of blockchain achieves secure and decentralized market settlements in this centralized market. Numerical results for a 4-MG system and modified IEEE 33-bus systems show the effectiveness of the proposed transactive energy and carbon market.
Show less
- Title
- Transactive Energy Market for Electric Vehicle Charging Stations in Constrained Power and Transportation Networks
- Creator
- Affolabi, Larissa Arielle Sèfiath
- Date
- 2023
- Description
-
In response to the urgent need for decarbonization, our society is actively working towards reducing carbon emissions across various sectors....
Show moreIn response to the urgent need for decarbonization, our society is actively working towards reducing carbon emissions across various sectors. These efforts have resulted in the widespread adoption of distributed energy resources (DERs) in the electricity sector and the widespread adoption of electric vehicles (EVs) in the transportation sector. The growing popularity of EVs has resulted in rapid growth of charging infrastructure to meet the increasing demand. Recently, combined efforts across those two sectors have gained popularity with the deployment of EV charging stations (EVCSs) with on-site DERs like solar photovoltaic and/or battery energy storage systems not only to defer or avoid the need for power distribution equipment upgrades but also to achieve more environmentally friendly outcomes in terms of decarbonization goals. To increase transportation electrification, we need to expand further the charging infrastructure. The key challenge lies in accelerating charging station deployment while ensuring the safe and efficient operation of the power distribution system where most of this new load will be concentrated. Numerous research efforts have been dedicated to the study of EVCSs, with a focus on either optimizing the pricing of charging services or addressing the energy management challenges from the perspective of system operators. While these aspects are crucial, it is essential to recognize the importance of attracting private sector stakeholders to invest in and support the expansion of the EVCS network. Relying solely on subsidies is insufficient to finance the necessary scale of EVCS deployment required to accelerate the widespread adoption of EVs. The increasing adoption of EVCSs integrated with on-site DERs highlights the potential for Transactive Energy Market (TEM) operations among EVCSs. However, unlike regular prosumers, EVCS operations are uniquely influenced by both the power distribution and the transportation networks. In light of this issue, this dissertation proposes several multi-agent frameworks that leverage on-site DERs at EVCSs to establish a secondary revenue stream through a TEM. This dissertation investigates the technical and economic aspects of these multi-agent frameworks. At its core, we propose two holistic frameworks to solve the energy management problem of EVCSs within a TEM environment. Modeled as independent profit-driven entities, each EVCS optimally schedules its operation based on the day-ahead traffic assignment problem solved by the traffic operator agent. For the TEM clearing process, we propose two distinct lines of approach. First, a centralized approach where a single entity assumes both the market operator and grid operator functions. This integrated approach streamlines the decision-making process and ensures coordinated operations between the market and the power grid. Second, a decentralized approach, where separate entities take on the roles of the market operator and grid operator, respectively. This decentralized structure allows for more flexibility and distributed decision-making within the TEM. Furthermore, in contrast to many TEM related studies that overlook the complexity of the power distribution system, we introduce a comprehensive three-phase unbalanced optimal power flow model. This model incorporates features such as network reconfiguration and tap changers, allowing for a more accurate representation and understanding of the power distribution system's operation. Various case studies are used to prove the effectiveness of our proposed lines of approach to EVCSs’ day-ahead energy management problem.
Show less