Search results
(1 - 4 of 4)
- Title
- PMU DATA APPLICATIONS IN SMART GRID: LOAD MODELING, EVENT DETECTION AND STATE ESTIMATION
- Creator
- Ge, Yinyin
- Date
- 2016, 2016-05
- Description
-
The thesis mainly includes four parts of research, event detection, data archival reduction, load modeling, state estimation. Firstly, we...
Show moreThe thesis mainly includes four parts of research, event detection, data archival reduction, load modeling, state estimation. Firstly, we present methods on real-time event detection and data archival reduction based on synchrophasor data produced by phasor measurement unit (PMU). Event detection is performed with Principal Component Analysis (PCA) and a second order difference method with a hierarchical framework for the event notification strategy on a small-scale Microgrid. Compared with the existing methods, the proposed method is more practical and efficient in the combined use of event detection and data archival reduction. Secondly, the proposed method on data reduction, which is an “Event oriented auto-adjustable sliding window method”, implements a curve fitting algorithm with a weighted exponential function-based variable sliding window accommodating different event types. It works efficiently with minimal loss in data information especially around detected events. The performance of the proposed method is shown on actual PMU data from the IIT campus Microgrid, thus successfully improving the situational awareness (SA) of the campus power system network. Thirdly, we present a new “event-oriented” method of online load modeling for the IIT Microgrid based on synchrophasor data produced PMU. Several load models and their parameter estimation methods are proposed. It is given great importance on choosing the best models for the detected events. The online load modeling process is based on an adjustable sliding window applied to two different types of load step changes. The load modeling tests and related analysis on the synchrophasor data of the IIT Microgrid are demonstrated in this paper. Finally, we present a three-phase unbalanced distribution system state estimation (DSSE) method based on Semidefinitetheir parameter estimation methods are proposed. It is given great importance on choosing the best models for the detected events. The online load modeling process is based on an adjustable sliding window applied to two different types of load step changes. The load modeling tests and related analysis on the synchrophasor data of the IIT Microgrid are demonstrated in this paper. Finally, we present a three-phase unbalanced distribution system state estimation (DSSE) method based on Semidefinite Programming (SDP). A partitioning strategy with the aid of PMU and another distributed optimization algorithm alternating direction method of multipliers (ADMM) are also proposed for large-scale DSSE. Compared with a traditional weighted least square (WLS) method based on the Gauss-Newton iteration, the proposed DSSE by SDP method delivers a more accurate estimation, and the application of ADMM can lead to high performance for large scale DSSE while deriving satisfying estimation.
Ph.D. in Electrical Engineering, May 2016
Show less
- Title
- Towards the Robust Situation Awareness in Distribution Management System
- Creator
- Yao, Yiyun
- Date
- 2019
- Description
-
In distribution systems, intermittent distributed energy resources (DERs) and vol-atile loads will result in a wide variation of system...
Show moreIn distribution systems, intermittent distributed energy resources (DERs) and vol-atile loads will result in a wide variation of system operating conditions. This motivates the establishment of modern distribution management system (DMS) for real-time net-work monitoring, resource optimization, and demand management. Three subproblems are mainly discussed when establishing the robust situation awareness in DMS. A measurement placement problem is proposed to decide the optimal locations and types of measurements to be placed in the distribution systems that minimize the worst-case estimation errors for DSSE over different system operating conditions. Four indices of the estimation error covariance matrix are chosen as the criteria of accuracy. The proposed measurement placement problem is formulated as a mixed-integer sem-idefinite programming (MISDP) problem. To avoid the combinatorial complexity, a con-vex relaxation, followed by a local optimization method, is employed to solve the MISDP problem. The proposed problem and the effectiveness of the proposed solution method are numerically demonstrated on the 33-bus distribution system.Distribution system state estimation (DSSE) is one of the vital components in the next-generation distribution management system (DMS), which allows the operators to monitor the entire system’s operating conditions. Due to the lack of real-time measurements, DSSE has to process measurements whose quality varies significantly across different sources, which causes convergence issue to the Gauss-Newton solver. In this chapter, a semidefinite programming (SDP) framework is developed to reformulate the DSSE problem into a rank- constrained SDP problem. One challenge of this technique is the nonconvex rank-one constraint, which is generally relaxed. However, the relaxed SDP-DSSE problem cannot guarantee a rank-one solution and hence lose optimality. Therefore, we propose two solution approaches, namely the rank reduction approach and the convex iteration approach, to obtain rank-one solutions for the SDP-DSSE problem. The proposed model and the effectiveness of the proposed solution approaches are numerically demonstrated on the IEEE 13-, 34-bus, and 123-bus distribution systems.A SE algorithm based on random measurements selection, which is inspired by the concept of moving target defense (MTD), is developed to prevent and mitigate stealthy cyber-attacks. With the proposed SE, a library of selected measurements scenarios is first generated offline given the available measurements and network topology. During online operation, multiple weighted least square (WLS) based SEs are processed in parallel with randomly picked scenarios from the library. The final solution is selected based on the largest normalized residuals with regard to individual scenarios. The effectiveness of the proposed SE is examined by attack-defense experiments on IEEE 14-bus, 39-bus, 57-bus, and 118-bus systems.
Show less
- Title
- Improving Localization Safety for Landmark-Based LiDAR Localization System
- Creator
- Chen, Yihe
- Date
- 2024
- Description
-
Autonomous ground robots have gained traction in various commercial applications, with established safety protocols covering subsystem...
Show moreAutonomous ground robots have gained traction in various commercial applications, with established safety protocols covering subsystem reliability, control algorithm stability, path planning, and localization. This thesis specifically delves into the localizer, a critical component responsible for determining the vehicle’s state (e.g., position and orientation), assessing compliance with localization safety requirements, and proposing methods for enhancing localization safety.Within the robotics domain, diverse localizers are utilized, such as scan-matching techniques like normal distribution transformations (NDT), the iterative closest point (ICP) algorithm,probabilistic maps method, and semantic map-based localization.Notably, NDT stands out as a widely adopted standalone laser localization method, prevalent in autonomous driving software such as Autoware and Apollo platforms.In addition to the mentioned localizers, common state estimators include variants of Kalman Filter, particle filter-based, and factor graph-based estimators. The evaluation of localization performance typically involves quantifying the estimated state variance for these state estimators.While various localizer options exist, this study focuses on those utilizing extended Kalman filters and factor graph methods. Unlike methods like NDT and ICP algorithms, extended Kalman filters and factor graph based approaches guarantee bounding of estimated state uncertainty and have been extensively researched for integrity monitoring.Common variance analysis, employed for sensor readings and state estimators, has limitations, primarily focusing on non-faulted scenarios under nominal conditions. This approach proves impractical for real-world scenarios and falls short for safety-critical applications like autonomous vehicles (AVs).To overcome these limitations, this thesis utilizes a dedicated safety metric: integrity risk. Integrity risk assesses the reliability of a robot’s sensory readings and localization algorithm performance under both faulted and non-faulted conditions. With a proven track record in aviation, integrity risk has recently been applied to robotics applications, particularly for evaluating the safety of lidar localization.Despite the significance of improving localization integrity risk through laser landmark manipulation, this remains an under explored territory. Existing research on robot integrity risk primarily focuses on the vehicles themselves. To comprehensively understand the integrity risk of a lidar-based localization system, as addressed in this thesis, an exploration of lidar measurement faults’ modes is essential, a topic covered in this thesis.The primary contributions of this thesis include: A realistic error estimation method for state estimators in autonomous vehicles navigating using pole-shape lidar landmark maps, along with a compensatory method; A method for quantifying the risk associated with unmapped associations in urban environments, enhancing the realism of values provided by the integrity risk estimator; a novel approach to improve the localization integrity of autonomous vehicles equipped with lidar feature extractors in urban environments through minimal environmental modifications, mitigating the impact of unmapped association faults. Simulation results and experimental results are presented and discussed to illustrate the impact of each method, providing further insights into their contributions to localization safety.
Show less
- Title
- Improving Localization Safety for Landmark-Based LiDAR Localization System
- Creator
- Chen, Yihe
- Date
- 2024
- Description
-
Autonomous ground robots have gained traction in various commercial applications, with established safety protocols covering subsystem...
Show moreAutonomous ground robots have gained traction in various commercial applications, with established safety protocols covering subsystem reliability, control algorithm stability, path planning, and localization. This thesis specifically delves into the localizer, a critical component responsible for determining the vehicle’s state (e.g., position and orientation), assessing compliance with localization safety requirements, and proposing methods for enhancing localization safety.Within the robotics domain, diverse localizers are utilized, such as scan-matching techniques like normal distribution transformations (NDT), the iterative closest point (ICP) algorithm,probabilistic maps method, and semantic map-based localization.Notably, NDT stands out as a widely adopted standalone laser localization method, prevalent in autonomous driving software such as Autoware and Apollo platforms.In addition to the mentioned localizers, common state estimators include variants of Kalman Filter, particle filter-based, and factor graph-based estimators. The evaluation of localization performance typically involves quantifying the estimated state variance for these state estimators.While various localizer options exist, this study focuses on those utilizing extended Kalman filters and factor graph methods. Unlike methods like NDT and ICP algorithms, extended Kalman filters and factor graph based approaches guarantee bounding of estimated state uncertainty and have been extensively researched for integrity monitoring.Common variance analysis, employed for sensor readings and state estimators, has limitations, primarily focusing on non-faulted scenarios under nominal conditions. This approach proves impractical for real-world scenarios and falls short for safety-critical applications like autonomous vehicles (AVs).To overcome these limitations, this thesis utilizes a dedicated safety metric: integrity risk. Integrity risk assesses the reliability of a robot’s sensory readings and localization algorithm performance under both faulted and non-faulted conditions. With a proven track record in aviation, integrity risk has recently been applied to robotics applications, particularly for evaluating the safety of lidar localization.Despite the significance of improving localization integrity risk through laser landmark manipulation, this remains an under explored territory. Existing research on robot integrity risk primarily focuses on the vehicles themselves. To comprehensively understand the integrity risk of a lidar-based localization system, as addressed in this thesis, an exploration of lidar measurement faults’ modes is essential, a topic covered in this thesis.The primary contributions of this thesis include: A realistic error estimation method for state estimators in autonomous vehicles navigating using pole-shape lidar landmark maps, along with a compensatory method; A method for quantifying the risk associated with unmapped associations in urban environments, enhancing the realism of values provided by the integrity risk estimator; a novel approach to improve the localization integrity of autonomous vehicles equipped with lidar feature extractors in urban environments through minimal environmental modifications, mitigating the impact of unmapped association faults. Simulation results and experimental results are presented and discussed to illustrate the impact of each method, providing further insights into their contributions to localization safety.
Show less