Search results
(1 - 3 of 3)
- Title
- THE PATH TO HIGH Q-FACTORS IN SUPERCONDUCTING ACCELERATING CAVITIES: FLUX EXPULSION AND SURFACE RESISTANCE OPTIMIZATION
- Creator
- Martinello, Martina
- Date
- 2016, 2016-12
- Description
-
Accelerating cavities are devices resonating in the radio-frequency (RF) range used to accelerate charged particles in accelerators....
Show moreAccelerating cavities are devices resonating in the radio-frequency (RF) range used to accelerate charged particles in accelerators. Superconducting accelerating cavities are made out of niobium and operate at the liquid helium temperature. Even if superconducting, these resonating structures have some RF driven surface resistance that causes power dissipation. In order to decrease as much as possible the power losses, the cavity quality factor must be increased by decreasing the surface resistance. In this dissertation, the RF surface resistance is analyzed for a large variety of cavities made with different state-of-the-art surface treatments, with the goal of finding the surface treatment capable to return the highest Q-factor values in a cryomodule-like environment. This study analyzes not only the superconducting properties described by the BCS surface resistance, which is the contribution that takes into account dissipation due to quasi-particle excitations, but also the increasing of the surface resistance due to trapped flux. When cavities are cooled down below their critical temperature inside a cryomodule, there is always some remnant magnetic field that may be trapped increasing the global RF surface resistance. This thesis also analyzes how the fraction of external magnetic field, which is actually trapped in the cavity during the cooldown, can be minimized. This study is performed on an elliptical single-cell horizontally cooled cavity, resembling the geometry of cavities cooled in accelerator cryomodules. The horizontal cooldown study reveals that, as in case of the vertical cooldown, when the cooling is performed fast, large thermal gradients are created along the cavity helping magnetic flux expulsion. However, for this geometry the complete magnetic flux expulsion from the cavity equator is more difficult to achieve. This becomes even more challenging in presence of orthogonal magnetic field, that is easily trapped on top of the cavity equator causing temperature rising. The physics behind the magnetic flux expulsion is also analyzed, showing that during a fast cooldown the magnetic field structures, called vortices, tend to move in the same direction of the thermal gradient, from the Meissner state region to the mixed state region, minimizing the Gibbs free energy. On the other hand, during a slow cool down, not only the vortices movement is limited by the absence of thermal gradients, but, also, at the end of the superconducting transition, the magnetic field concentrates along randomly distributed normal-conducting region from which it cannot be expelled anymore. The systematic study of the surface resistance components performed for the different surface treatments, reveals that the BCS surface resistance and the trapped flux surface resistance have opposite trends as a function of the surface impurity content, defined by the mean free path. At medium field value, the BCS surface resistance is minimized for nitrogen-doped cavities and significantly larger for standard niobium cavities. On the other hand, Nitrogen-doped cavities show larger dissipation due to trapped flux. This is consequence of the bell-shaped trend of the trapped flux sensitivity as a function of the mean free path. Such experimental findings allow also a better understanding of the RF dissipation due to trapped flux. The best compromise between all the surface resistance components, taking into account the possibility of trapping some external magnetic field, is given by light nitrogen-doping treatments. However, the beneficial effects of the nitrogen-doping is completely lost when large amount of magnetic field is trapped during the cooldown, underlying the importance of both cooldown and magnetic field shielding optimization in high quality factors cryomodules.
Ph.D. in Physics, December 2016
Show less
- Title
- PHYSICS OF LIMITING PHENOMENA IN SUPERCONDUCTING MICROWAVE RESONATORS: VORTEX DISSIPATION, ULTIMATE QUENCH AND QUALITY FACTOR DEGRADATION MECHANISMS
- Creator
- Checchin, Mattia
- Date
- 2016, 2016-12
- Description
-
Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of...
Show moreSuperconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates—in some cases—in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime—pinning- or flux-flow-dominated—can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface—dirty layer—the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.
Ph.D. in Physics, December 2016
Show less
- Title
- Raman Spectroscopy as a Probe of Surface Defects in Nb for SRF Cavities
- Creator
- Hommerding, Emily, Ford, Denise, Cao, Chaoyue, Bishnoi, Sandra, Zasadzinski, John
- Date
- 2012, 2012
- Description
-
Superconducting RF (SRF) cavities made of Nb are an enabling device for future linear accelerators. Recently it has been demonstrated that hot...
Show moreSuperconducting RF (SRF) cavities made of Nb are an enabling device for future linear accelerators. Recently it has been demonstrated that hot spots in SRF cavities, which diminish performance, are correlated with a high density of defects (etch pits) especially near grain boundaries. For a pit to cause local heating, it is likely that near-surface impurities, e.g. hydrides or oxides are leading to suppressed superconductivity. New probes are needed to measure such complexes. Here we present Raman spectroscopy. Raman is a fast, nonperturbative method that can measure the vibrational modes of Nb-O and Nb-H complexes by inelastic light scattering. These can then be compared to molecular dynamics simulations to identify oxide and hydride phases. The probing depth of Raman is estimated from the skin depth of the 785 nm laser in the bulk Nb ~ 10-20 nm. This is a reasonable fraction of the superconducting penetration depth ~ 45 nm. Simulating manufacturing processes of SRF cavities may shed light on the origins and composition of hot spots, and their relationship with defects in the material. Defects such as pits, whose origins are yet unknown, are found in the hot spots of completed cavities. Raman spectroscopy is used here to identify changes in the surface chemistry after manipulations such as creating artificial pits, exposing the material to chemical etching, or cold-working the material. BCP exposure and cold-working are common to the SRF manufacturing process.
Show less