Search results
(1 - 1 of 1)
- Title
- AI IN MEDICINE: ENABLING INTELLIGENT IMAGING, PROGNOSIS, AND MINIMALLY INVASIVE SURGERY
- Creator
- Getty, Neil
- Date
- 2022
- Description
-
While an extremely rich research field, compared to other applications of AI such as natural language processing (NLP) and image processing...
Show moreWhile an extremely rich research field, compared to other applications of AI such as natural language processing (NLP) and image processing/generation, AI in medicine has been much slower to be applied in real-world clinical settings. Often the stakes of failure are more dire, the access of private and proprietary data more costly, and the burden of proof required by expert clinicians is much higher. Beyond these barriers, the often typical data-driven approach towards validation is interrupted by a need for expertise to analyze results. Whereas the results of a trained Imagenet or machine translation model are easily verified by a computational researcher, analysis in medicine can be much more multi-disciplinary demanding. AI in medicine is motivated by a great demand for progress in health-care, but an even greater responsibility for high accuracy, model transparency, and expert validation.This thesis develops machine and deep learning techniques for medical image enhancement, patient outcome prognosis, and minimally invasive robotic surgery awareness and augmentation. Each of the works presented were undertaken in di- rect collaboration with medical domain experts, and the efforts could not have been completed without them. Pursuing medical image enhancement we worked with radiologists, neuroscientists and a neurosurgeon. In patient outcome prognosis we worked with clinical neuropsychologists and a cardiovascular surgeon. For robotic surgery we worked with surgical residents and a surgeon expert in minimally invasive surgery. Each of these collaborations guided priorities for problem and model design, analysis, and long-term objectives that ground this thesis as a concerted effort towards clinically actionable medical AI. The contributions of this thesis focus on three specific medical domains. (1) Deep learning for medical brain scans: developed processing pipelines and deep learn- ing models for image annotation, registration, segmentation and diagnosis in both traumatic brain injury (TBI) and brain tumor cohorts. A major focus of these works is on the efficacy of low-data methods, and techniques for validation of results without any ground truth annotations. (2) Outcome prognosis for TBI and risk prediction for Cardiovascular Disease (CVD): we developed feature extraction pipelines and models for TBI and CVD patient clinical outcome prognosis and risk assessment. We design risk prediction models for CVD patients using traditional Cox modeling, machine learning, and deep learning techniques. In this works we conduct exhaustive data and model ablation study, with a focus on feature saliency analysis, model transparency, and usage of multi-modal data. (3) AI for enhanced and automated robotic surgery: we developed computer vision and deep learning techniques for understanding and augmenting minimally invasive robotic surgery scenes. We’ve developed models to recognize surgical actions from vision and kinematic data. Beyond model and techniques, we also curated novel datasets and prediction benchmarks from simulated and real endoscopic surgeries. We show the potential for self-supervised techniques in surgery, as well as multi-input and multi-task models.
Show less