Search results
(1 - 2 of 2)
- Title
- Fast mesh based reconstruction for cardiac-gated SPECT and methodology for medical image quality assessment
- Creator
- Massanes Basi, Francesc
- Date
- 2018
- Description
-
In this work, we are studying two different subjects that are intricately connected. For the first subject we are considering tools to...
Show moreIn this work, we are studying two different subjects that are intricately connected. For the first subject we are considering tools to improve the quality of single photon emission computed tomography (SPECT) imaging. Currently, SPECT images assist physicians to evaluate perfusion levels within the myocardium, aide in the diagnosis of various types of carcinomas, and measure pulmonary function. The SPECT technique relies on injecting a radioactive material into the patient's body and then detecting the emitted radiation by means of a gamma camera. However, the amount of radioactive material that can be given to a patient is limited by the negative effects that the radiation will have on the patient's health. This causes SPECT images to be highly corrupted by noise. We will focus our work on cardiac SPECT, which adds the challenge of the heart's continuous motion during the acquisition process. First, we describe the methodology used in SPECT imaging and reconstruction. Our methodology uses a content adaptive model, which uses more samples on the regions of the body that we want to be reconstructed more accurately and less in other areas. Then we describe our algorithm and our novel implementation that lets us use the content adaptive model to perform the reconstruction. In this work, we show that our implementation outperforms the reconstruction method used for clinical applications. In the second subject we are evaluating tools to measure image quality in the context of medical diagnosis. In signal processing, accuracy is typically measured as the amount of similarity between an original signal and its reconstruction. This similarity is traditionally a numeric metric that does not take into account the intended purpose of the reconstructed images. In the field of medical imaging, a reconstructed image is meant to aid a physician to perform a diagnostic task. Therefore, the quality of the reconstruction should be measured by how much it helps to perform the diagnostic task. A model observer is a computer tool that aims to mimic the performance of human observer, usually a radiologist, at a relevant diagnosis task. In this work we present our linear model observer designed to automatically select the features needed to model a human observer response. This is a novelty from the model observers currently being used in the medical imaging field, which instead usually have ad-hoc chosen features. Our model observer dependents only on the resolution of the image, not the type of imaging technique used to acquire the image.
Show less
- Title
- 3D reconstruction of lake surface using camera and lidar sensor fusion
- Creator
- Khan, Shahrukh
- Date
- 2020
- Description
-
Global Navigation Satellite System Reflectometry (GNSS-R) relies upon detecting the GNSS signals reflected off a surface and then analyzing...
Show moreGlobal Navigation Satellite System Reflectometry (GNSS-R) relies upon detecting the GNSS signals reflected off a surface and then analyzing the reflected signal to obtain surface characteristics. GNSS-R has become one of the many additional applications of the readily available GNSS signals, alongside more traditional remote sensing of ionospheric monitoring, beyond the intended GNSS purposes of providing position, navigation, and timing estimation. In previous work, GPS signals reflected off Lake Michigan in Chicago have been collected using a specially designed portable sensor suite. The data collected is then analyzed to differentiate between surface ice and water conditions, as well as obtain other characteristic information such as surface reflectivity. The goal is to provide a way for remote sensing of seasonal ice formation beyond just satellite imagery which can be affected by cloud cover. To confirm the validity of the GNSS-R results there needs to be a separate reference against which to compare. This work demonstrates the sensor fusion between camera and lidar to reconstruct the lake surface, to provide that truth reference for comparison against the results of the GPS reflectometry signal processing. For this setup, the camera provides visual information about the lake surface, while the lidar provides distance information with respect to the sensor suite. Combining the data from the two sensors allows backward projection of the camera image to reconstruct the lake surface and its features. The backward projection relies upon knowledge of the camera's intrinsic properties alongside distance information of the features captured by the camera. Each pixel of the camera image is then transformed to its 3D position relative to the sensor system. This produces a 3D map of the lake surface, as captured by the sensors. The estimated point at which the GPS signal reflects off the surface, the specular point, is calculated by the satellite position at the time of interest and the receiver location. This point is then mapped onto the reconstructed surface to identify the exact location where the signal reflected and compare the surface visually to the results from the signal analysis.Time-varying camera-lidar-specular-point maps of the data campaigns conducted for this project are created for comparison with the GPS signal analysis. Multiple data campaigns were performed during which the Lake Michigan surface had surface ice, water or a mixture of the two. The lake surface is reconstructed for different timestamps, using the appropriate image frame and lidar frame. Combining chronologically, the changes in the lake surface can then be observed along with the movement of the specular point, due to the movement of the GPS satellites. Any satellites passing over a boundary between water and ice on the lake surface are identified and time stamped, to then be compared to the GPS signal analysis results.
Show less