Search results
(1 - 5 of 5)
- Title
- Quantum Computation for the Understanding of Mass: Simulating Quantum Field Theories
- Creator
- Rivero Ramírez, Pedro
- Date
- 2021
- Description
-
This thesis demonstrates the production of hadron mass on a quantum computer. Working in the Nambu–Jona-Lasinio model in 1+1 dimensions and 2...
Show moreThis thesis demonstrates the production of hadron mass on a quantum computer. Working in the Nambu–Jona-Lasinio model in 1+1 dimensions and 2 flavors, I show a separation of the contribution of quark masses and interactions to the mass. Along the way I develop a new tool called Quantum Sampling Regression (QSR) that allows for an optimal sampling of low qubit quantum computers when using hybrid variational eigenvalue solving techniques. I demonstrate the regime where QSR dominates the current standard Variational Eigensolver Technique, and benchmark it by improving the calculation of deuteron binding energy. Finally, I developed QRAND — a multiprotocol and multiplatform quantum random number generation framework — in support of the quantum computing community.
Show less
- Title
- Using Niobium surface encapsulation and Rhenium to enhance the coherence of superconducting devices
- Creator
- Crisa, Francesco
- Date
- 2024
- Description
-
In recent decades, the scientific community has grappled with escalating complexity, necessitating a more advanced tool capable of tackling...
Show moreIn recent decades, the scientific community has grappled with escalating complexity, necessitating a more advanced tool capable of tackling increasingly intricate simulations beyond the capabilities of classical computers. This tool, known as a quantum computer, features processors composed of individual units termed qubits. While various methods exist for constructing qubits, superconducting circuits have emerged as a leading approach, owing to their parallels with semiconductor technology.In recent years, significant strides have been made in optimizing the geometry and design of qubits. However, the current bottleneck in the performance of superconducting qubits lies in the presence of defects and impurities within the materials used. Niobium, owing to its desirable properties, such as high critical temperature and low kinetic inductance, stands out as the most prevalent superconducting material. Nonetheless, it is encumbered by a relatively thick oxide layer (approximately 5 nm) exhibiting three distinct oxidation states: NbO, NbO$_2$, and Nb$_2$O$_5$. The primary challenge with niobium lies in the multitude of defects localized within the highly disordered Nb$_2$O$_5$ layer and at the interfaces between the different oxides. In this study, I present an encapsulation strategy aimed at restraining surface oxide growth by depositing a thin layer (5 to 10 nm) of another material in vacuum atop the Nb thin film. This approach exploits the superconducting proximity effect, and it was successfully employed in the development of Josephson junction devices on Nb during the 1980s.In the past two years, tantalum and titanium nitride have emerged as promising alternative materials, with breakthrough qubit publications showcasing coherence times five to ten times superior to those achieved in Nb. The focus will be on the fabrication and RF testing of Nb-based qubits with Ta and Au capping layers. With Ta capping, we have achieved the best T1 (not average) decay time of nearly 600 us, which is more than a factor of 10 improvements over the bare Nb. This establishes the unique capping layer approach as a significant new direction for the development of superconducting qubits.Concurrently with the exploration of materials for encapsulation strategies, identifying materials conducive to enhancing the performance of superconducting qubits is imperative. Ideal candidates should exhibit a thin, low-loss surface oxide and establish a clean interface with the substrate, thereby minimizing defects and potential sources of losses. Rhenium, characterized by an extremely thin surface oxide (less than 1 nm) and nearly perfect crystal structure alignment with commonly used substrates such as sapphire, emerges as a promising material platform poised to elevate the performance of superconducting qubits.
Show less
- Title
- Improving Niobium Superconducting Radio-Frequency Cavities by Studying Tantalum
- Creator
- Helfrich, Halle
- Date
- 2023
- Description
-
Niobium superconducting radio-frequency (SRF) cavities are widely used accelerating structures. Improvements in both quality factor, Q0, and...
Show moreNiobium superconducting radio-frequency (SRF) cavities are widely used accelerating structures. Improvements in both quality factor, Q0, and maximum accelerating gradient, Eacc, have been made to SRF cavities by introducing new processing techniques. These breakthroughs include processes such as nitrogen doping(N-Doping) and infusion, electrochemical polishing (EP) and High Pressure Rinsing (HPR). [1] There is still abundant opportunity to improve the cavities or, rather, the material they’re primarily composed of: niobium. A focus here is the role the native oxide of Nb plays in SRF cavity performance. The values of interest in a given cavity are its quality factor Q0, maximum accelerating gradient Eacc and surface resistance Rs . This work characterizes Nb and Ta foils prepared under identical conditions using X-ray photoelectron spectroscopy (XPS) to compare surface oxides and better understand RF loss mechanisms in Nb SRF cavities and qubits. It is well established that Ta qubits experience much longer coherence times than Nb qubits, which is probably due to the larger RF losses in Nb oxide. By studying Tantalum, an element similar to Niobium, the mechanisms of the losses that originate in the oxide and suboxide layers present on the surface of Nb cavities might finally be unlocked. We find noticeable differences in the oxides of Nb and Ta formed by air exposure of clean foils. In particular, Ta does not display the TaO2 suboxide in XPS, while Nb commonly shows NbO2. This suggests that suboxides are an additional contributor of RF losses. We also suggest that thin Ta film coatings of Nb SRF cavities may be a way of increasing Q0. It is in the interest of the accelerator community to fully understand the surface impurities present in Nb SRF cavities so that strategies for mitigating the effects can be proposed.
Show less
- Title
- Using Niobium surface encapsulation and Rhenium to enhance the coherence of superconducting devices
- Creator
- Crisa, Francesco
- Date
- 2024
- Description
-
In recent decades, the scientific community has grappled with escalating complexity, necessitating a more advanced tool capable of tackling...
Show moreIn recent decades, the scientific community has grappled with escalating complexity, necessitating a more advanced tool capable of tackling increasingly intricate simulations beyond the capabilities of classical computers. This tool, known as a quantum computer, features processors composed of individual units termed qubits. While various methods exist for constructing qubits, superconducting circuits have emerged as a leading approach, owing to their parallels with semiconductor technology.In recent years, significant strides have been made in optimizing the geometry and design of qubits. However, the current bottleneck in the performance of superconducting qubits lies in the presence of defects and impurities within the materials used. Niobium, owing to its desirable properties, such as high critical temperature and low kinetic inductance, stands out as the most prevalent superconducting material. Nonetheless, it is encumbered by a relatively thick oxide layer (approximately 5 nm) exhibiting three distinct oxidation states: NbO, NbO$_2$, and Nb$_2$O$_5$. The primary challenge with niobium lies in the multitude of defects localized within the highly disordered Nb$_2$O$_5$ layer and at the interfaces between the different oxides. In this study, I present an encapsulation strategy aimed at restraining surface oxide growth by depositing a thin layer (5 to 10 nm) of another material in vacuum atop the Nb thin film. This approach exploits the superconducting proximity effect, and it was successfully employed in the development of Josephson junction devices on Nb during the 1980s.In the past two years, tantalum and titanium nitride have emerged as promising alternative materials, with breakthrough qubit publications showcasing coherence times five to ten times superior to those achieved in Nb. The focus will be on the fabrication and RF testing of Nb-based qubits with Ta and Au capping layers. With Ta capping, we have achieved the best T1 (not average) decay time of nearly 600 us, which is more than a factor of 10 improvements over the bare Nb. This establishes the unique capping layer approach as a significant new direction for the development of superconducting qubits.Concurrently with the exploration of materials for encapsulation strategies, identifying materials conducive to enhancing the performance of superconducting qubits is imperative. Ideal candidates should exhibit a thin, low-loss surface oxide and establish a clean interface with the substrate, thereby minimizing defects and potential sources of losses. Rhenium, characterized by an extremely thin surface oxide (less than 1 nm) and nearly perfect crystal structure alignment with commonly used substrates such as sapphire, emerges as a promising material platform poised to elevate the performance of superconducting qubits.
Show less
- Title
- Improving Niobium Superconducting Radio-Frequency Cavities by Studying Tantalum
- Creator
- Helfrich, Halle
- Date
- 2023
- Description
-
Niobium superconducting radio-frequency (SRF) cavities are widely used accelerating structures. Improvements in both quality factor, Q0, and...
Show moreNiobium superconducting radio-frequency (SRF) cavities are widely used accelerating structures. Improvements in both quality factor, Q0, and maximum accelerating gradient, Eacc, have been made to SRF cavities by introducing new processing techniques. These breakthroughs include processes such as nitrogen doping(N-Doping) and infusion, electrochemical polishing (EP) and High Pressure Rinsing (HPR). [1] There is still abundant opportunity to improve the cavities or, rather, the material they’re primarily composed of: niobium. A focus here is the role the native oxide of Nb plays in SRF cavity performance. The values of interest in a given cavity are its quality factor Q0, maximum accelerating gradient Eacc and surface resistance Rs . This work characterizes Nb and Ta foils prepared under identical conditions using X-ray photoelectron spectroscopy (XPS) to compare surface oxides and better understand RF loss mechanisms in Nb SRF cavities and qubits. It is well established that Ta qubits experience much longer coherence times than Nb qubits, which is probably due to the larger RF losses in Nb oxide. By studying Tantalum, an element similar to Niobium, the mechanisms of the losses that originate in the oxide and suboxide layers present on the surface of Nb cavities might finally be unlocked. We find noticeable differences in the oxides of Nb and Ta formed by air exposure of clean foils. In particular, Ta does not display the TaO2 suboxide in XPS, while Nb commonly shows NbO2. This suggests that suboxides are an additional contributor of RF losses. We also suggest that thin Ta film coatings of Nb SRF cavities may be a way of increasing Q0. It is in the interest of the accelerator community to fully understand the surface impurities present in Nb SRF cavities so that strategies for mitigating the effects can be proposed.
Show less