Search results
(1 - 2 of 2)
- Title
- PRICING AND APPLICATION OF ELECTRIC STORAGE
- Creator
- Zhao, Jialin
- Date
- 2017, 2017-05
- Description
-
Electric storage provides a vehicle to store power for future use. It contributes to the grids in multiple aspects. For instance, electric...
Show moreElectric storage provides a vehicle to store power for future use. It contributes to the grids in multiple aspects. For instance, electric storage is a more effective approach to provide electricity ancillary services than conventional methods. Additionally, electric storage, especially fast-responding units, allows owners to implement high-frequency power transactions in settings such as the 5-min real-time trading market. Such high-frequency power trades were limited in the past. However, as technology advances, the power markets have evolved. For instance, the California Independent System Operator now supports the 5-min real-time trading and the hourly day-ahead ancillary services bidding. Existing valuation models of electric storage were not designed to accommodate these recent market developments. To fill this gap, I focus on the fast-responding grid-level electric storage that provides both the real-time trading and the day-ahead ancillary services bidding. To evaluate such an asset, I propose a Monte Carlo Simulation-based valuation model. The foundation of my model is simulations of power prices. This study develops a new simulation model of electric prices. It is worth noting that, unlike existing models, my proposed simulation model captures the dependency of the real-time markets on the day-ahead markets. Upon such simulations, this study investigates the pricing and the application of electric storage at a 5-min granularity. Essentially, my model is a Dynamic Programming system with both endogenous variables (i.e., the State-of-Charge of electric storage) and exogenous variables (i.e., power prices). My first numerical example is the valuation of a fictitious 4MWh battery. Similarly, my second example evaluates the application of two units of 2MWh batteries. By comparing these two experiments, I investigate the issues related to battery configurations, such as the impacts of splitting storage capability on the valuation of electric storage.
Ph.D. in Management Science, May 2017
Show less
- Title
- Structural Uncertainty Analysis of Nuclear Reactor Core Load Pads
- Creator
- Wozniak, Nicholas
- Date
- 2019
- Description
-
In fast spectrum nuclear reactors, reactivity is directly related to the capability of the reactor to sustain a fission chain reaction for...
Show moreIn fast spectrum nuclear reactors, reactivity is directly related to the capability of the reactor to sustain a fission chain reaction for power production. Historically, mechanical/structural analysis and design have been driven primarily by deterministic methods. However, reactivity is extremely sensitive to the location of the fuel within the reactor; which is subject to uncertainties. This makes deterministic models unstable and can allow manufacturing errors to contribute to uncertainties in analysis, resulting in potential safety concerns and incorrect reactor lifetime prediction. One potential means to address this challenge is the use of stochastic analysis. A framework is presented which introduces uncertainty analysis through the use of Monte Carlo Simulation. Latin Hypercube Sampling is used to reduce the number of sample runs and the computational effort and storage space requirements for the results. Geometric parameters such as the gaps at the load pad contact points, the location of the above core load pad (ACLP), and even temperature gradient profiles, that are important to the design of nuclear reactors are varied, and their effects on the overall performance are studied through sensitivity analysis. The main focus was to quantify the effects of the variation of these parameters directly on the variation of the contact forces and deformations of the fuel assemblies which house and control the movement of the fuel. Based on the results of the sensitivity study, this study found that the ACLP location has the largest effect on contact forces. And as such, any uncertainty in this parameter results in a rather large variation in the intensity of the contact force. Furthermore, specific recommendations are given to help control these variations as well as for further investigations on other parameters that may be significant to the design of fuel assemblies.
Show less