Search results
(1 - 5 of 5)
- Title
- DATA-DRIVEN FIRST-PRINCIPLES STUDY OF ORDERING PHENOMENA IN COMPLEX ALLOYS
- Creator
- Kim, George
- Date
- 2021
- Description
-
Determining the chemical (dis)ordering behavior in materials such as high entropy alloys (HEAs), and ternary Laves phases is fundamental to...
Show moreDetermining the chemical (dis)ordering behavior in materials such as high entropy alloys (HEAs), and ternary Laves phases is fundamental to developing structure-property relations that can be used as guiding principles for alloy design. A common obstacle in materials engineering is that an improvement of a material property comes at the expense of some other desirable properties. For example, trade-offs may be made between strength and ductility, or strength and density, etc. The large compositional and configuration space of possible HEAs, and Laves phases contain potential candidate materials with a balance of optimized properties and tunable structural and functional properties. However, fully exploring the large compositional and configurational space with experimental or even high-throughput Density Functional Theory (DFT) approaches is infeasible, and as of yet, predictive rules for phase stability and chemical (dis)order in HEAs, and Laves phases are still open questions.In this thesis, a HEA with chemical disorder, Al0.3CoCrFeNi, was studied using complementary experimental, DFT, and ML methods. The chemical disorder within the HEA resulted in a severely distorted lattice leading to a reduction in stiffness. Temperature dependence of chemical ordering behavior is studied in NbTaTiV and NbTaTiVZr HEAs using Monte Carlo (MC) simulations, which predicts short-range ordering (SRO) as well as short-range clustering (SRC) behavior in both HEAs. The compositional dependent behavior of substitutional ordering in two ternary Laves phases is evaluated and compared using cluster expansion (CE) models and Monte Carlo (MC) simulations.
Show less
- Title
- MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DISCONTINUOUSLY PRECIPITATED NI-CO-AL ALLOYS
- Creator
- Ho, Kathy
- Date
- 2022
- Description
-
The study of high temperature structural materials has been one of great interest and immense focus in recent years of research and...
Show moreThe study of high temperature structural materials has been one of great interest and immense focus in recent years of research and development. With the capability of catering to specific needs and applications while being commercially cost-effective, these materials can be synthesized using various types of methods and materials for a large range of applications. In order to implement the advantageous properties of these materials for practical use in service, empirical data relating to the material and mechanical properties of these high temperature structural alloys must first be obtained. This can be achieved through numerous processing methods. One particular method involves precipitation strengthening. Two types of transformation modes include discontinuous and continuous precipitation. Discontinuous precipitation (DP) nucleates at high angle, incoherent grain boundary, grows through grain boundary diffusion, and produces a lamellar structure consisting of alternating layers of γ and γˡ (Ephler, 2004). Continuous precipitation (CP) nucleates within the grain, is controlled through volume diffusion producing, and results in a homogeneous distribution of equilibrium composition precipitates with a spherical/cuboidal morphology. Since both modes of transformation possess a chemical driving force, resulting from the supersaturation of solute, the coexistence of both DP and CP transformation in a material is possible. However, as demonstrated from past studies, the presence of a partial DP transformation in structural alloys is undesirable as detrimental effects on mechanical properties are observed. As a result, numerous studies have focused on suppressing DP all together. In 1972 Erhard Hornbogen hypothesized that a fully DP transformed material would yield superior mechanical properties, similar to pearlite formation in steel, since the lamellar structure would increase barriers to dislocation movement (Hornbogen, 1972). As a result, recent studies have redirected their focus in an effort to encourage DP transformation to completion for improved mechanical properties. Therefore, the purpose of this work was to 1) determine the aging conditions under which a complete, 100% DP transformation would be achieved in select alloys, 2) determine the conditions where optimal precipitate size via CP transformation is obtained to effectively use precipitation strengthening without the concern of over-aging, 3) experimentally compare the material and mechanical properties between 100% DP aged samples and CP aged samples consisting of the optimal precipitate size, 4) compare the mechanical properties between alloys that have undergone a complete DP transformation to commercial alloys currently used in service, and 5) provide empirical data to verify Hornbogen’s claim. The results from this work indicated that 1) a lower aging temperature promote DP transformation while a higher temperature promotes CP transformation, 2) a smaller grain size prior to aging was more favorable for DP transformation while larger grains were favorable for CP transformation, 3) a complete DP transformation was observed for Alloy 9 and Alloy 10 after aging at 500°C for 4 hours and 550°C for 4 hours, 4) Alloy 1, Alloy 3, and Alloy 5 were potentially undergoing a different type of transformation at lower DP aging temperatures, where β phase was present, 5) optimal precipitate size for effective use of precipitation strengthening (CP transformation) was achieved under CP aging conditions 700°C-1HR for Alloy 10 and 750°C-1HR for Alloy 9 and the forged stock bar, 6) a small fraction of DP consistently formed at the grain boundaries of the CP aged samples for all alloy samples, indicating that the nucleation of DP was quick, but growth was limited, 7) mechanical properties of the DP aged samples for Alloy 9, Alloy 10 and the forged bar were superior to their corresponding CP aged samples in terms of the hardness, UTS, and yield stress, but were less ductile than the CP aged samples, and 8) the mechanical properties of DP aged samples for Alloy 9, Alloy 10, and the forged bar were comparable, and at times superior, to the commercially available alloys. Due to limited prior research conducted on the mechanical properties of DP alloys, this investigation serves as a pioneering effort experimentally determine if the mechanical properties of completely DP transformed material are superior to that of CP transformed material, aged to optimal precipitate size, while collecting empirical data to verify Hornbogen’s claim.
Show less
- Title
- Towards Understanding the Microstructure and Mechanical Properties of Additively Manufactured Ni-base Superalloys
- Creator
- Tiparti, Dhruv Reddy
- Date
- 2022
- Description
-
Nickel-base superalloy components such as turbine discs typically undergo numerous manufacturing steps that contribute to increasing the cost...
Show moreNickel-base superalloy components such as turbine discs typically undergo numerous manufacturing steps that contribute to increasing the cost and the waste of excess materials. With advent of fusion based additive of manufacturing (AM) techniques, such components with complex geometry can be fabricated with great efficiency. However due to characteristically high energy densities, fast cooling rate, and layer-by-layer building process associated with AM; Ni-base superalloys with higher temperature performance are difficult to be fabricated by AM due to susceptibility to composition related defect formation, which is further exacerbated by anisotropic grain structures induced by the large thermal gradients present. Crack-free material can be fabricated but, in most cases, issues such as an anisotropic microstructure will prevail, and the balance of mechanical properties achieved may not be suitable for the desired applications. Several strategies exist to mitigate the challenges posed by additive manufacturing via post-processing such as hot-isostatic processing, annealing heat treatments, application of grain refining inoculants, etc. All these strategies utilized to mitigate issues with AM of Ni-base superalloys still require further study to understand their effects on the microstructure and mechanical properties. This work aims to evaluate the use of inoculant particles, and novel heat treatments on the microstructure and mechanical properties of different superalloys. First, the effect of varying amounts of CoAl2O4 inoculant ranging from 0 to 2 wt.% on the microstructure evolution of Inconel 718(IN718) fabricated by selective laser melting (SLM) was evaluated. The findings from this study indicated that additions of CoAl2O4 only resulted in a minor degree of grain refinement with slight increase in anisotropy; in addition, a CoAl2O4 ¬content above 0.2 wt.% resulted in the formation of agglomerate inclusions; and that to effectively utilize CoAl2O4 as a grain refining inoculant, process parameters must be further optimized while considering the formation of agglomerates, and other defects. Second, the application of CoAl2¬O4 was extended towards the Direct Energy Deposition (DED) of IN718. Here findings indicated that due to the modification of the thermophysical properties of the melt pool by oxide addition, an earlier onset of large columnar extending across multiple layers occurred while counteracting conditions required for equiaxed grain formation; and these CoAl2O4 were also found to exhibit a potent Zenner pinning effect that maintained the as-built grain structure despite application of extreme high treatment condition of 1200oC for 4 hrs. Third, the tensile and fatigue properties of the DED IN718 with CoAl2O4 were evaluated. Here, it was found that the addition of CoAl2O4 leads to a minor increase in tensile strength in the as-built condition attributed primarily to the fine oxide dispersion; a more modest increase in tensile strength in the heat-treated condition due to grain refinement induced by retaining the as-built grain structure; and that despite the increase in tensile strength with CoAl2O4 a corresponding increase in fatigue life did not occur. Lastly, the processing of René 65 conducted by laser-powder bed fusion(L-PBF) was done and compared to the conventionally cast and wrought material. Here, the effect of the difference in processing route in conjunction with heat treatments was evaluated to understand the creep and stress relaxation behavior. It was found that L-PBF of René 65 led to an overall improved resistance to deformation by creep and relaxation mechanism.
Show less
- Title
- Correlating Microstructural Properties to Macroscopic Shear Mechanics to Improve the Understanding of Tissue Biomechanics
- Creator
- Cahoon, Stacey Marie
- Date
- 2023
- Description
-
Understanding tissue biomechanics is of interest for modeling organ injury from external loads, development of tissue surrogate materials, and...
Show moreUnderstanding tissue biomechanics is of interest for modeling organ injury from external loads, development of tissue surrogate materials, and creating new biomarkers for disease. Probing the response of soft tissue in shear can provide information on histopathology, provided a methodology exists that connects the macroscopic mechanical properties with cell-level properties. Two of the available methods to measure the macroscopic shear viscoelastic properties of soft tissue are oscillatory shear rheometry and ultrasound shear wave elastography (SWE). Due to its accuracy, rheometry is the gold standard, but it is destructive, requires excised homogeneous samples, and can only be applied ex-vivo. SWE is an emerging non-invasive imaging technique which requires validation, ostensibly by comparing with rheometry. Histology is the gold standard for providing morphological information on the cell level, which can determine tissue pathology. The challenge is to connect the macroscopic mechanical metrics derived from SWE and rheometry to the tissue microstructure. To address this challenge, mathematical models can be used that employ multiple, judiciously chosen measurements of macroscopic shear properties and histology to estimate intrinsic mechanical properties at the cell level.A class of homogeneous and composite lipid phantoms mimicking the mechanical properties of brain white matter were fabricated to test a novel stereotactic system and an optimized SWE imaging protocol. The shear stiffness measurements obtained with SWE on the whole phantom were validated with rheometry performed on a series of samples made with the same material as the phantoms. The same procedure was applied to porcine brain white matter excised from fresh whole brains (n=3). Cylindrical cores were extracted from the corpus callosum area, sliced into discs and microscopic sections were subsequently removed for histology. Good agreement was found between the SWE and rheometry measurements of shear stiffness, which generally increases with the level of compressive prestress. Immunofluorescence was used to stain separately the axon neurofilaments and myelin sheaths, and digital image analysis of the confocal microscopy images allowed the estimation of axon volume fraction and axon-to-myelin ratio in the corpus callosum. Using these metrics and a composite mechanical model, a connection between the macroscopic shear measurements and the viscoelastic properties of axon and glia matrix was made for porcine brain tissue. Similarly, rheometry was used to measure the macroscopic properties of decellularized porcine myocardium extracellular matrix (ECM) in two different fiber locations, and for three different fiber orientations. The mechanical properties were found to be dependent upon fiber location, but not on fiber orientation. Since collagen is a primary supportive structure for the ECM, several microscopic slices were probed with immunofluorescence to compute the collagen I and collagen IV volume fractions. Another mechanical model was employed to establish a connection between the macroscopic properties and the mechanical properties of the collagen matrix in decellularized porcine myocardial ECM.This dissertation highlights the use and integration of three different experimental techniques (rheometry, ultrasound SWE, and histology) to correlate key microstructural properties of soft, fibrous tissues (ex-vivo healthy porcine brain white matter and myocardium ECM) with macroscopic shear mechanics. The consideration of the effect of compressive prestress is noteworthy. The reported baseline data for the tissues under shear loading and prestress are pertinent to the physiological function of these tissues, and therefore constitute preliminary data and a necessary first step before a systematic study of the biomechanics of the same tissues in vivo is performed.
Show less
- Title
- Correlating Microstructural Properties to Macroscopic Shear Mechanics to Improve the Understanding of Tissue Biomechanics
- Creator
- Cahoon, Stacey Marie
- Date
- 2023
- Description
-
Understanding tissue biomechanics is of interest for modeling organ injury from external loads, development of tissue surrogate materials, and...
Show moreUnderstanding tissue biomechanics is of interest for modeling organ injury from external loads, development of tissue surrogate materials, and creating new biomarkers for disease. Probing the response of soft tissue in shear can provide information on histopathology, provided a methodology exists that connects the macroscopic mechanical properties with cell-level properties. Two of the available methods to measure the macroscopic shear viscoelastic properties of soft tissue are oscillatory shear rheometry and ultrasound shear wave elastography (SWE). Due to its accuracy, rheometry is the gold standard, but it is destructive, requires excised homogeneous samples, and can only be applied ex-vivo. SWE is an emerging non-invasive imaging technique which requires validation, ostensibly by comparing with rheometry. Histology is the gold standard for providing morphological information on the cell level, which can determine tissue pathology. The challenge is to connect the macroscopic mechanical metrics derived from SWE and rheometry to the tissue microstructure. To address this challenge, mathematical models can be used that employ multiple, judiciously chosen measurements of macroscopic shear properties and histology to estimate intrinsic mechanical properties at the cell level.A class of homogeneous and composite lipid phantoms mimicking the mechanical properties of brain white matter were fabricated to test a novel stereotactic system and an optimized SWE imaging protocol. The shear stiffness measurements obtained with SWE on the whole phantom were validated with rheometry performed on a series of samples made with the same material as the phantoms. The same procedure was applied to porcine brain white matter excised from fresh whole brains (n=3). Cylindrical cores were extracted from the corpus callosum area, sliced into discs and microscopic sections were subsequently removed for histology. Good agreement was found between the SWE and rheometry measurements of shear stiffness, which generally increases with the level of compressive prestress. Immunofluorescence was used to stain separately the axon neurofilaments and myelin sheaths, and digital image analysis of the confocal microscopy images allowed the estimation of axon volume fraction and axon-to-myelin ratio in the corpus callosum. Using these metrics and a composite mechanical model, a connection between the macroscopic shear measurements and the viscoelastic properties of axon and glia matrix was made for porcine brain tissue. Similarly, rheometry was used to measure the macroscopic properties of decellularized porcine myocardium extracellular matrix (ECM) in two different fiber locations, and for three different fiber orientations. The mechanical properties were found to be dependent upon fiber location, but not on fiber orientation. Since collagen is a primary supportive structure for the ECM, several microscopic slices were probed with immunofluorescence to compute the collagen I and collagen IV volume fractions. Another mechanical model was employed to establish a connection between the macroscopic properties and the mechanical properties of the collagen matrix in decellularized porcine myocardial ECM.This dissertation highlights the use and integration of three different experimental techniques (rheometry, ultrasound SWE, and histology) to correlate key microstructural properties of soft, fibrous tissues (ex-vivo healthy porcine brain white matter and myocardium ECM) with macroscopic shear mechanics. The consideration of the effect of compressive prestress is noteworthy. The reported baseline data for the tissues under shear loading and prestress are pertinent to the physiological function of these tissues, and therefore constitute preliminary data and a necessary first step before a systematic study of the biomechanics of the same tissues in vivo is performed.
Show less