Search results
(1 - 5 of 5)
- Title
- DEVELOPMENT OF A HIGH ANGULAR RESOLUTION DIFFUSION IMAGING TEMPLATE AND PROBABILISTIC CONNECTIVITY-BASED ATLAS OF THE HUMAN BRAIN
- Creator
- Varentsova, Anna
- Date
- 2016, 2016-05
- Description
-
Digital human brain atlases consisting of MRI-based templates and semantic labels delineating different brain regions serve a critical role in...
Show moreDigital human brain atlases consisting of MRI-based templates and semantic labels delineating different brain regions serve a critical role in neuroimaging, mainly facilitating spatial normalization and automated segmentation for the purposes of voxel-wise, region-of-interest, and network analyses. Diffusion MRI templates contain rich information about the microstructure of the brain, however the accuracy of templates constructed based on the diffusion tensor imaging (DTI) model is limited in regions with complex neuronal microarchitecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DTI model and is capable of resolving intravoxel heterogeneity. In this work a method to develop artifact-free HARDI template of the human brain from low angular resolution data is presented. Existing white matter (WM) atlases have been generated either based on anatomical landmarks, thus mixing tracts with substantially different roles, or using DTI tractography, which fails in regions with crossing fibers. Connectivity-based atlases developed using HARDI templates and probabilistic tractography have potential to identify functionally distinct subregions of the brain. This work presents connectivity-based atlas of human brain WM created using HARDI template in ICBM-152 space and a set of FreeSurfer grey matter labels.
Ph.D. in Physics, May 2016
Show less
- Title
- A High Angular Resolution Diffusion Imaging (HARDI) Template of the Human Brain
- Creator
- Varentsova, Anna
- Date
- 2011-05-01, 2011-05-08
- Description
-
High Angular Resolution Diffusion Imaging (HARDI) is a powerful extension of Diffusion Tensor Imaging (DTI) capable of resolving intravoxel...
Show moreHigh Angular Resolution Diffusion Imaging (HARDI) is a powerful extension of Diffusion Tensor Imaging (DTI) capable of resolving intravoxel heterogeneity of fiber orientations which is important for brain connectivity studies. The purpose of this study was to produce a human brain HARDI template by combining information from artifact-free low angular resolution datasets collected on 67 subjects.
Show less
- Title
- Development and evaluation of high resolution MRI templates and labels of the MIITRA atlas
- Creator
- Niaz, Mohammad Rakeen
- Date
- 2022
- Description
-
A digital human brain atlas consisting of MRI-based multi-modal templates and semantic labels delineating brain regions are commonly used as...
Show moreA digital human brain atlas consisting of MRI-based multi-modal templates and semantic labels delineating brain regions are commonly used as references for spatial normalization in a wide range of neuroimaging studies. Magnetic resonance imaging (MRI) studies of the aging brain is of significant interest in recent times to explore the role of brain characteristics associated with cognitive functions. The introduction of advanced image reconstruction techniques, and the recent trend in MRI acquisitions at submillimeter in-plane resolution have resulted in an easier availability of MRI data on older adults at high spatial resolution. An atlas with a comprehensive set of high-resolution templates representative of the older adult brain and detailed labels accurately mapping brain regions can increase the sensitivity and specificity of such neuroimaging studies. Additionally, most neuroimaging studies can benefit from a high-resolution atlas with templates where fine brain structures are resolved and, where the transition between different tissue can be more accurately defined. However, such an atlas is not publicly available for older adults. Hence the goal of this thesis is to develop a comprehensive, high-resolution digital human brain atlas for older adults termed as Multi-channel Illinois Institute of Technology and Rush University Aging (MIITRA) atlas.This dissertation aims a) to develop a new technique based on the principles of super-resolution for the construction of high-resolution structural and diffusion tensor templates, and evaluate the templates for use in studies on older adults, b) to construct and evaluate high-resolution structural and diffusion tensor templates constructed using the method developed in (a) for the MIITRA atlas using MRI data collected on 400 nondemented older adults, c) to investigate and develop a technique for the construction of high-resolution labels and evaluate the performance of gray matter labels constructed using this technique in segmenting the gray matter of older adults, and d) to develop and evaluate a comprehensive set of high-resolution labels using the technique developed in (c) for the MIITRA atlas using data on 400 non-demented older adults. Based on the aforementioned points, the thesis is structured as follows: Firstly, this thesis presents a novel approach for the construction of a high-resolution T1-weighted structural template based on the principles of super resolution. This method introduced a forward mapping technique to minimize signal interpolation, and a weighted averaging method to account for residual misregistration. The new template was shown to resolve finer brain structures compared to a lower resolution template constructed using the same data. It was demonstrated through systematic comparison of this new template to several other standardized templates of different resolutions that a) it exhibited high image sharpness, b) was free of image artifacts, c) allowed for high spatial normalization accuracy and detection of smaller inter-group morphometric differences compared to other standardized templates, d) was highly representative of the older adult brain. This novel approach was further modified for the construction of a high spatial resolution diffusion tensor imaging template. The new DTI template is the first high spatial resolution population-based DTI template of the older adult brain and exhibits high image quality, high sharpness, is free of artifacts, resolves fine white matter structures, and provides higher spatial normalization accuracy of older adult DTI data compared to other available DTI templates. Secondly, the aforementioned techniques were utilized in the development of high resolution T1-weighted and DTI templates, and tissue probability maps for the MIITRA atlas using high quality MRI images on 400 diverse, community cohort of non-demented older adults. Thirdly, a novel approach for generating high resolution gray matter labels is presented that involves a) utilization of the super resolution technique to ensure sharp delineation of structures, and b) a multi atlas based correction technique to reduce errors due to misregistration. High-resolution gray matter labels were constructed using the super resolution technique. When used for regional segmentation of the gray matter of older adults, the new gray matter labels of the showed high overlap, high geometric correlation, and low dissimilarity with the manually edited reference labels, demonstrating that there is a high agreement between the new labels and the manually edited Freesurfer labels. Finally, this thesis presents the development of a comprehensive array of gyral-based, cytoarchitecture-based, and functional connectivity-based gray matter labels in MIITRA space utilizing the aforementioned techniques. These labels include gyral-based, cytoarchitecture-based, and functional connectivity-based labels which will enhance the functionality of the MIITRA atlas. The new labels will also enhance the interoperability of MIITRA with the source atlases.
Show less
- Title
- FUNCTIONAL CONNECTIVITY LABELS FOR THE MULTICHANNEL IIT AND RUSH UNIVERSITY AGING (MIITRA) ATLAS
- Creator
- Badhon, Rashadul Hasan
- Date
- 2022
- Description
-
In the field of medical imaging, a brain atlas refers to a specific model of the brain of a population where different parts of the atlas...
Show moreIn the field of medical imaging, a brain atlas refers to a specific model of the brain of a population where different parts of the atlas correspond to different anatomical parts of the average brain of the population. A brain atlas is composed of MRI templates and semantic labels and is a crucial component of neuroscience for its critical role in facilitating spatial normalization, temporal characterization and automated segmentation for the purposes of voxel-wise, region of interest and network analyses. Building a brain atlas requires registering multi-dimensional brain datasets from a population into a reference space and, during the last decade, the advent of new technologies and computational modeling approaches has made it possible to build high-quality, detailed brain atlases. At the same time developments in data acquisition now allow the construction of comprehensive brain atlases containing a variety of information about the brain. The Multichannel Illinois Institute of Technology and Rush university Aging (MIITRA) atlas project is developing a high-quality comprehensive atlas of the older adult brain containing a multitude of templates and labels. These templates are constructed with state-of-the-art spatial normalization of high-quality data and as a result, they are characterized by higher image quality, are more representative of the brain of non-demented older adults and provide higher inter-subject spatial normalization accuracy of older adult data compared to other available templates. The methodology used in the development of the MIITRA templates facilitates the construction of accurate structural and connectivity labels. Functional connectivity MRI reveals sets of functionally connected brain regions, forming networks, by investigating synchronous fluctuations in MRI signal over time across these brain regions during rest. The purpose of this work was to generate functional connectivity labels for several brain networks in MIITRA space.
Show less
- Title
- LOCAL VISCOELASTIC PROPERTIES OF SOFT ANISOTROPIC FIBROUS TISSUE
- Creator
- Gallo, Nicolas Remy
- Date
- 2020
- Description
-
The current aging population, with more than 80 million "baby boomers", will present a steep medical challenge for our society in a...
Show moreThe current aging population, with more than 80 million "baby boomers", will present a steep medical challenge for our society in a foreseeable future. Half of the adults over 85 years old are predicted to be diagnosed with Alzheimer's disease by 2050. With healthcare cost reaching over 700 billion dollars in the United States, early detection of Alzheimer's disease (AD) and other co-existing neurodegenerative diseases is crucial to improve the recovery odds in patients and to decrease individual care cost. This work seeks to tackle this problem by proposing a novel computational framework toward improving the measurement of shear visco-elastic properties of brain white matter (WM), which vary with age. These measurements practically represent the effective (average) response of many cells and are typically obtained by using rheology or elastography. Although the former is direct, the latter requires the solution of an inverse problem based on a priori mechanical tissue model. The mechanical anisotropy of WM has previously not been fully explored although many inconsistencies have been reported in brain MRE experiments. To account for these inconsistencies a transversely isotropic constitutive model for the brain WM is proposed to interpret prior experiments involving 7 young and 4 older healthy men. By employing a novel inversion scheme, we report the local variation of the effective transverse and axial shear moduli in two well aligned WM structures (corpus callosum: CC; and cortical spinal tract: CST) for both the young and old cohort of healthy subjects part of the study. This work reports statistically significant changes in local regional variation of the transverse modulus across the CC for the young cohort. In the older cohort, the trend was similar yet not statistically significant. A novel candidate biomarker, the shear anisotropy metric, defined as the ratio of the transverse and axial shear moduli, found statistically significant local regional variation across the CC but not in the CST. Healthy aging was observed to decrease both transverse and axial in both CC and CST, although the variation was significant only for the CC. Finally, in an effort to understand the cause of effective transverse mechanical properties variation in WM with aging, the connection between effective and intrinsic contribution of WM cellular constituents is established. The intrinsic mechanical contributions of axons and glial matrix are separated by fitting the estimates of the effective shear moduli to a microscopic composite fiber model of myelinated axons embedded in the glial matrix. This work provides a method to establish a baseline for healthy brain mechanical properties thus promising to increase the specificity of MRE toward early diagnosis of neurodegenerative diseases. Additional oscillating disc rheology experiments with decellularized porcine myocardium, and the fabrication of a stable heterogeneous phantom matching the mechanical, diffusional and electrical properties of the WM provide foundational knowledge for due development and validation of MRE methodologies employed in other tissues.
Show less