Search results
(1 - 1 of 1)
- Title
- Quantifying Localization Safety for State-of-the-Art Mobile Robot Estimation Algorithms
- Creator
- Abdul Hafez, Osama Mutie Fahad
- Date
- 2023
- Description
-
In mobile robotics, localization safety is quantified using covariance matrix or particle spread.However, such methods are insufficient for...
Show moreIn mobile robotics, localization safety is quantified using covariance matrix or particle spread.However, such methods are insufficient for mission or life-critical applications, like Autonomous Vehicles (AVs), because they only reflect nominal sensor noise without considering sensor measurement faults. Sensor faults are unknown deterministic errors that cannot be modeled using a zero mean Gaussian distribution. Ignoring sensor faults, in such applications, might result in large localization errors, which in turn deceives other reliant systems, like the controller, leading to catastrophic consequences, such as traffic accidents for AVs. Thus, other techniques need to be used to conservatively quantify pose safety.This thesis builds upon previous research in aviation safety, or what is referred to as \textit{integrity monitoring}, to quantify localization safety for mobile robots that use state-of-the-art state estimators (as localizers).Specifically, this thesis utilizes the localization \textit{integrity risk} metric, as a measure of localization safety, which is defined as the probability of the robot's pose estimate error to lie outside pre-determined acceptable limits while an alarm is not triggered. Unlike open-sky aviation applications, where Global Navigation Satellite Systems (GNSS) signals are available, mobile robots operate in GNSS-denied, or in the best case GNSS-degraded, environments, which demands utilizing more complex set of sensors to guarantee an acceptable level of localization safety. This thesis provides a conservative measure of localization safety by rigorously upper-bounding the integrity risk while accounting for both nominal lidar noise and unmodeled lidar measurement faults.The contributions of this thesis include the design and analysis of practical integrity monitoring and failure detection procedures for mobile robots utilizing map-based particle filtering, a recursive integrity monitoring method for mobile robots utilizing map-based fixed lag smoothing for both solution-separation and chi-squared as failure detectors, the synthesis of an integrity monitoring procedure for mobile robots utilizing Extended Kalman Filter-based Simultaneous Localization And Mapping (EKF-based SLAM), and a Model Predictive Control (MPC) framework that is capable of planning mobile robot's trajectory to follow a predefined robot path while maintaining a predefined minimum level of mobile robot localization safety. The proposed methodologies are validated using both simulation and experimental results conducted in real-world urban university campus environments.
Show less