Search results
(1 - 1 of 1)
- Title
- DEEP LEARNING FOR IMAGE PROCESSING WITH APPLICATIONS TO MEDICAL IMAGING
- Creator
- Zarshenas, Amin
- Date
- 2019
- Description
-
Deep Learning is a subfield of machine learning concerned with algorithms that learn hierarchical data representations. Deep learning has...
Show moreDeep Learning is a subfield of machine learning concerned with algorithms that learn hierarchical data representations. Deep learning has proven extremely successful in many computer vision tasks including object detection and recognition. In this thesis, we aim to develop and design deep-learning models to better perform image processing and tackle three important problems: natural image denoising, computed tomography (CT) dose reduction, and bone suppression in chest radiography (“chest x-ray”: CXR). As the first contribution of this thesis, we aimed to answer to probably the most critical design questions, under the task of natural image denoising. To this end, we defined a class of deep learning models, called neural network convolution (NNC). We investigated several design modules for designing NNC for image processing. Based on our analysis, we design a deep residual NNC (R-NNC) for this task. One of the important challenges in image denoising regards to a scenario in which the images have varying noise levels. Our analysis showed that training a single R-NNC on images at multiple noise levels results in a network that cannot handle very high noise levels; and sometimes, it blurs the high-frequency information on less noisy areas. To address this problem, we designed and developed two new deep-learning structures, namely, noise-specific NNC (NS-NNC) and a DeepFloat model, for the task of image denoising at varying noise levels. Our models achieved the highest denoising performance comparing to the state-of-the-art techniques.As the second contribution of the thesis, we aimed to tackle the task of CT dose reduction by means of our NNC. Studies have shown that high dose of CT scans can increase the risk of radiation-induced cancer in patients dramatically; therefore, it is very important to reduce the radiation dose as much as possible. For this problem, we introduced a mixture of anatomy-specific (AS) NNC experts. The basic idea is to train multiple NNC models for different anatomic segments with different characteristics, and merge the predictions based on the segmentations. Our phantom and clinical analysis showed that more than 90% dose reduction would be achieved using our AS NNC model.We exploited our findings from image denoising and CT dose reduction, to tackle the challenging task of bone suppression in CXRs. Most lung nodules that are missed by radiologists as well as by computer-aided detection systems overlap with bones in CXRs. Our purpose was to develop an imaging system to virtually separate ribs and clavicles from lung nodules and soft-tissue in CXRs. To achieve this, we developed a mixture of anatomy-specific, orientation-frequency-specific (ASOFS) expert deep NNC model. While our model was able to decompose the CXRs, to achieve an even higher bone suppression performance, we employed our deep R-NNC for the bone suppression application. Our model was able to create bone and soft-tissue images from single CXRs, without requiring specialized equipment or increasing the radiation dose.
Show less