Search results
(1 - 3 of 3)
- Title
- MODELING AND CONTROL OF A GASOLINE-FUELED COMPRESSION IGNITION ENGINE
- Creator
- Pamminger, Michael
- Date
- 2021
- Description
-
This work investigates a novel combustion concept, Gasoline Compression Ignition, that derives its superiority from the high compression ratio...
Show moreThis work investigates a novel combustion concept, Gasoline Compression Ignition, that derives its superiority from the high compression ratio of a compression ignition engine as well as the properties of gasoline fuel, such as longer ignition delay and higher volatility compared to diesel fuel. Gasoline Compression Ignition was experimentally tested on a 12.4L truck engine and the acquired data were leveraged to develop a physics-based 0-dimensional combustion model for an engine operating with a low-reactivity fuel. The proposed 0-dimensional combustion model was developed to account for the different stages in combustion caused by the fuel stratification of various injection events and fuel mass fractions. As the ignition delay model is an integral part of the entire combustion process and significantly affects the predictionaccuracy, special attention was paid to local phenomena influencing ignition delay. A 1-dimensional spray model by Musculus and Kattke was employed in conjunction with a Lagrangian tracking approach in order to estimate the local fuel-air ratio within the spray tip, as a proxy for reactivity. The local fuel-air ratio, in-cylinder temperature and pressure were used in an integral fashion to estimate the ignition delay. Heat release rates were modeled by using first-order non-linear differential equations. Model prediction errors in combustion phasing of less than 1 crank angle degree across most conditions were achieved. Modeling results of other combustion metrics such as combustion duration and indicated mean effective pressure are also suitably accurate. Also, the model has been shown to be capable of estimating the ringing intensity for most conditions. While the performance of the proposed model was very satisfactory, the high computational time made it unsuitable for simulations. The high computational cost was mostly caused by the 1-dimensional spray model which described the fuelstratifcation in the spray tip as a function of crank angle for multiple injection events. Insights obtained from the 1-dimensional spray model were leveraged and applied to a 0-dimensional model to reduce the computation time. With the reduced order model, the simulation time decreased by three orders of magnitude for an entire engine cycle over the combustion model with the 1-dimensional spray model. Capturing only the basic features of the spray propagation did not show a substantial increase in prediction error compared to the initially proposed model. In order for this model to reflect a virtual engine, the influence of changes in actuator settings on intake manifold dynamics was modeled with first-order transfer functions. The intake manifold dynamics in turn influence intake valve closure conditions and further the entire combustion process. The proposed model provides information about in-cylinder metrics such as combustion phasing and indicated mean effective pressure. By taking into account the losses due to gas-exchange and friction, the brake mean effective pressure was modeled. The model was also augmented to capture cycle-to-cycle variations, thereby ensuring a faithful representation of real engine behavior. The Gasoline Compression Ignition combustion model, the intake dynamics and gas-exchange and friction model as well as the cycle-to-cycle variations model were combined to create a full engine model. This Gasoline Compression Ignition engine model was used as the plant in a control system and implemented in Matlab/Simulink.The Gasoline Compression Ignition engine model was then leveraged to investigate control actions and engine behavior with and without limiting in-cylinder peak pressure as well as combustion noise. Controlling combustion noise is of particular interest for injection strategies where fuel introduction happens early in the cycle. State estimation was performed by means of a Kalman filter which feeds into a model predictive controller. The model predictive controller chooses control actions based on a predefined cost function under consideration of bounds reflecting physical constraints. The Gasoline Compression Ignition engine model was also utilized to establish a state-space model that serves the Kalman filter and model predictive controller for estimation and prediction. In addition, the proposed control architecture was investigated at two different levels of cycle-to-cycle variations. Disturbance rejection was implemented to reduce state fluctuations and control efforts when high cycle-to-cycle variations are present. The control algorithm is able to maintain the desired references for brake mean effective pressure and combustion phasing while controlling peak in-cylinder pressure and combustion noise.
Show less
- Title
- Prediction and Control of In-Cylinder Processes in Heavy-Duty Engines Using Alternative Fuels
- Creator
- Pulpeiro Gonzalez, Jorge
- Date
- 2024
- Description
-
This Ph.D. thesis focuses on advancing diagnostic techniques and control-oriented models to enhance the efficiency and performance of internal...
Show moreThis Ph.D. thesis focuses on advancing diagnostic techniques and control-oriented models to enhance the efficiency and performance of internal combustion (IC) engines, particularly heavy-duty engines utilizing alternative fuels. The research endeavors to contribute to the field of model-based control of engines through the development and implementation of innovative methodologies. The primary emphasis is on the development of diagnostic methods, control-oriented models and advanced control strategies for compression ignition engines using alternative fuels. The first key topic explores the determination of the Most Representative Cycle for Combustion Phasing Estimation based on cylinder pressure measurements. The method developed extracts crucial information from experimental data obtained from four distinct engines: the heavy-duty single-cylinder GCI engine, the light-duty multi-cylinder diesel engine, a CFR engine, and a single-cylinder light-duty Spark Ignition (SI) engine. This work lays the foundation for precise combustion phasing estimation, a critical parameter for engine control. The second major contribution involves the development of control-oriented models for Variable Geometry Turbochargers (VGT) and inter-coolers. Two models are established: a data-driven turbocharger model and an empirical inter-cooler model. These models are meticulously calibrated and validated using experimental data from a multi-cylinder light-duty diesel engine, providing valuable insights into the behavior of these components under varying conditions. The outcomes contribute to facilitate predictive control of engine air systems. The third core aspect of the thesis revolves around Model Predictive Control of Combustion Phasing in heavy-duty compression-ignition engines utilizing alternative fuels. A combustion phasing and engine load model is derived from experimental data and incorporated into an MPC framework. The MPC strategy is subsequently tested in the heavy-duty GCI test cell and compared against a conventional Proportional-Integral-Derivative (PID) control strategy. The results showcase the effectiveness of the MPC approach in achieving precise control of combustion phasing, demonstrating its potential for optimizing engine performance. In summary, this Ph.D. thesis contributes significantly to the field of engine controls by advancing diagnostic techniques, control-oriented models, and implementing a cutting-edge MPC-based control strategy for compression ignition engines using alternative fuels. The research findings not only enhance the understanding of in-cylinder processes but also pave the way for more efficient and sustainable heavy-duty engines using alternative fuels.
Show less
- Title
- Prediction and Control of In-Cylinder Processes in Heavy-Duty Engines Using Alternative Fuels
- Creator
- Pulpeiro Gonzalez, Jorge
- Date
- 2024
- Description
-
This Ph.D. thesis focuses on advancing diagnostic techniques and control-oriented models to enhance the efficiency and performance of internal...
Show moreThis Ph.D. thesis focuses on advancing diagnostic techniques and control-oriented models to enhance the efficiency and performance of internal combustion (IC) engines, particularly heavy-duty engines utilizing alternative fuels. The research endeavors to contribute to the field of model-based control of engines through the development and implementation of innovative methodologies. The primary emphasis is on the development of diagnostic methods, control-oriented models and advanced control strategies for compression ignition engines using alternative fuels. The first key topic explores the determination of the Most Representative Cycle for Combustion Phasing Estimation based on cylinder pressure measurements. The method developed extracts crucial information from experimental data obtained from four distinct engines: the heavy-duty single-cylinder GCI engine, the light-duty multi-cylinder diesel engine, a CFR engine, and a single-cylinder light-duty Spark Ignition (SI) engine. This work lays the foundation for precise combustion phasing estimation, a critical parameter for engine control. The second major contribution involves the development of control-oriented models for Variable Geometry Turbochargers (VGT) and inter-coolers. Two models are established: a data-driven turbocharger model and an empirical inter-cooler model. These models are meticulously calibrated and validated using experimental data from a multi-cylinder light-duty diesel engine, providing valuable insights into the behavior of these components under varying conditions. The outcomes contribute to facilitate predictive control of engine air systems. The third core aspect of the thesis revolves around Model Predictive Control of Combustion Phasing in heavy-duty compression-ignition engines utilizing alternative fuels. A combustion phasing and engine load model is derived from experimental data and incorporated into an MPC framework. The MPC strategy is subsequently tested in the heavy-duty GCI test cell and compared against a conventional Proportional-Integral-Derivative (PID) control strategy. The results showcase the effectiveness of the MPC approach in achieving precise control of combustion phasing, demonstrating its potential for optimizing engine performance. In summary, this Ph.D. thesis contributes significantly to the field of engine controls by advancing diagnostic techniques, control-oriented models, and implementing a cutting-edge MPC-based control strategy for compression ignition engines using alternative fuels. The research findings not only enhance the understanding of in-cylinder processes but also pave the way for more efficient and sustainable heavy-duty engines using alternative fuels.
Show less