Search results
(1 - 1 of 1)
- Title
- Fast mesh based reconstruction for cardiac-gated SPECT and methodology for medical image quality assessment
- Creator
- Massanes Basi, Francesc
- Date
- 2018
- Description
-
In this work, we are studying two different subjects that are intricately connected. For the first subject we are considering tools to...
Show moreIn this work, we are studying two different subjects that are intricately connected. For the first subject we are considering tools to improve the quality of single photon emission computed tomography (SPECT) imaging. Currently, SPECT images assist physicians to evaluate perfusion levels within the myocardium, aide in the diagnosis of various types of carcinomas, and measure pulmonary function. The SPECT technique relies on injecting a radioactive material into the patient's body and then detecting the emitted radiation by means of a gamma camera. However, the amount of radioactive material that can be given to a patient is limited by the negative effects that the radiation will have on the patient's health. This causes SPECT images to be highly corrupted by noise. We will focus our work on cardiac SPECT, which adds the challenge of the heart's continuous motion during the acquisition process. First, we describe the methodology used in SPECT imaging and reconstruction. Our methodology uses a content adaptive model, which uses more samples on the regions of the body that we want to be reconstructed more accurately and less in other areas. Then we describe our algorithm and our novel implementation that lets us use the content adaptive model to perform the reconstruction. In this work, we show that our implementation outperforms the reconstruction method used for clinical applications. In the second subject we are evaluating tools to measure image quality in the context of medical diagnosis. In signal processing, accuracy is typically measured as the amount of similarity between an original signal and its reconstruction. This similarity is traditionally a numeric metric that does not take into account the intended purpose of the reconstructed images. In the field of medical imaging, a reconstructed image is meant to aid a physician to perform a diagnostic task. Therefore, the quality of the reconstruction should be measured by how much it helps to perform the diagnostic task. A model observer is a computer tool that aims to mimic the performance of human observer, usually a radiologist, at a relevant diagnosis task. In this work we present our linear model observer designed to automatically select the features needed to model a human observer response. This is a novelty from the model observers currently being used in the medical imaging field, which instead usually have ad-hoc chosen features. Our model observer dependents only on the resolution of the image, not the type of imaging technique used to acquire the image.
Show less