Search results
(1 - 2 of 2)
- Title
- Application of Blockchain and Artificial Intelligence Methods in Power System Operation and Control
- Creator
- Farhoumandi, Matin
- Date
- 2023
- Description
-
The proliferation of distributed energy resources (DERs) and the large-scale electrification of transportation infrastructure are driving...
Show moreThe proliferation of distributed energy resources (DERs) and the large-scale electrification of transportation infrastructure are driving forces behind the ongoing evolution for transforming traditionally passive consumers into prosumers (both consumers and producers) in a coordinated system of power distribution network (PDN) and urban transportation network (UTN). In this new paradigm, peer-to-peer (P2P) energy trading is a promising energy management strategy for dynamically balancing the supply and demand in electricity markets. In this thesis, we propose the applications of artificial intelligence technology to power system operation and control. First, blockchain (BC) is applied to electric vehicle charging station (EVCS) operations to optimally transact energy in a hierarchical P2P framework. In the proposed framework, a decentralized privacy-preserving clearing mechanism is implemented in the transactive energy market (TEM) in which BC’s smart contracts are applied in a coordinated PDN and UTN operation. The effectiveness of the proposed TEM and its solution approach are validated via numerical simulations which are performed on a modified IEEE 123-bus PDN and a modified Sioux Falls UTN. Second, machine learning and deep learning methods are applied to short-term forecasting of non-conforming net load (STFNL). STFNL plays a vital role in enhancing the secure and efficient operation and control of power systems. However, power system consumption is affected by a variety of external factors and thus includes high levels of variations. These variations cause STFNL to be a challenging task as more DERs are integrated into the power grid. This thesis proposes two commonly used machine learning and deep learning methods, i.e., ensemble bagged and long short-term memory, for STFNL. The advantages, features and applications of these methods are expanded in a proposed fusion forecasting model that improves the STFNL accuracy. Additionally, data engineering and preprocessing options are used to increase the accuracy of the proposed fusion model. A comparative study based on practical load data is performed to demonstrate that the proposed fusion methodology can reach a relatively higher forecasting accuracy with lower error indices. Index Terms—Blockchain, deep learning and machine learning, electric vehicle charging stations, non-conforming net load forecasting, peer-to-peer transactive energy, power distribution and transportation networks, distributed energy resources, behind-the-meter supply resources.
Show less
- Title
- Transactive Energy Market for Electric Vehicle Charging Stations in Constrained Power and Transportation Networks
- Creator
- Affolabi, Larissa Arielle Sèfiath
- Date
- 2023
- Description
-
In response to the urgent need for decarbonization, our society is actively working towards reducing carbon emissions across various sectors....
Show moreIn response to the urgent need for decarbonization, our society is actively working towards reducing carbon emissions across various sectors. These efforts have resulted in the widespread adoption of distributed energy resources (DERs) in the electricity sector and the widespread adoption of electric vehicles (EVs) in the transportation sector. The growing popularity of EVs has resulted in rapid growth of charging infrastructure to meet the increasing demand. Recently, combined efforts across those two sectors have gained popularity with the deployment of EV charging stations (EVCSs) with on-site DERs like solar photovoltaic and/or battery energy storage systems not only to defer or avoid the need for power distribution equipment upgrades but also to achieve more environmentally friendly outcomes in terms of decarbonization goals. To increase transportation electrification, we need to expand further the charging infrastructure. The key challenge lies in accelerating charging station deployment while ensuring the safe and efficient operation of the power distribution system where most of this new load will be concentrated. Numerous research efforts have been dedicated to the study of EVCSs, with a focus on either optimizing the pricing of charging services or addressing the energy management challenges from the perspective of system operators. While these aspects are crucial, it is essential to recognize the importance of attracting private sector stakeholders to invest in and support the expansion of the EVCS network. Relying solely on subsidies is insufficient to finance the necessary scale of EVCS deployment required to accelerate the widespread adoption of EVs. The increasing adoption of EVCSs integrated with on-site DERs highlights the potential for Transactive Energy Market (TEM) operations among EVCSs. However, unlike regular prosumers, EVCS operations are uniquely influenced by both the power distribution and the transportation networks. In light of this issue, this dissertation proposes several multi-agent frameworks that leverage on-site DERs at EVCSs to establish a secondary revenue stream through a TEM. This dissertation investigates the technical and economic aspects of these multi-agent frameworks. At its core, we propose two holistic frameworks to solve the energy management problem of EVCSs within a TEM environment. Modeled as independent profit-driven entities, each EVCS optimally schedules its operation based on the day-ahead traffic assignment problem solved by the traffic operator agent. For the TEM clearing process, we propose two distinct lines of approach. First, a centralized approach where a single entity assumes both the market operator and grid operator functions. This integrated approach streamlines the decision-making process and ensures coordinated operations between the market and the power grid. Second, a decentralized approach, where separate entities take on the roles of the market operator and grid operator, respectively. This decentralized structure allows for more flexibility and distributed decision-making within the TEM. Furthermore, in contrast to many TEM related studies that overlook the complexity of the power distribution system, we introduce a comprehensive three-phase unbalanced optimal power flow model. This model incorporates features such as network reconfiguration and tap changers, allowing for a more accurate representation and understanding of the power distribution system's operation. Various case studies are used to prove the effectiveness of our proposed lines of approach to EVCSs’ day-ahead energy management problem.
Show less