Search results
(1 - 2 of 2)
- Title
- TRANSIENT STABILITY SIMULATION OF COMBINED THREE-PHASE UNBALANCED TRANSMISSION AND DISTRIBUTION NETWORKS
- Creator
- Alsharief, Yagoob
- Date
- 2019
- Description
-
Historically, transmission (T) system and distribution (D) system analysis has been done separately. The main reasons are 1) different...
Show moreHistorically, transmission (T) system and distribution (D) system analysis has been done separately. The main reasons are 1) different modeling frameworks, i.e., positive-sequence versus three-phase unbalanced, 2) system size, and 3) lack of dynamic two-way interaction between T&D. The typical power system usually consists of tens of thousands of transmission buses and thousands of distribution feeders with hundreds of customers per feeder. In the past, distribution networks have been largely passive with relatively little dynamic interaction with the transmission network. However, due to the new trends that the electric grid has been witnessing in the last decade with the installation of distributed energy resources (DERs) on the distribution level, such as behind-the-meter generation and energy storage units, electric vehicles, etc., dynamic simulation tools for combined T&D will become necessary in the near future. These tools will aid system operators and planning engineers in understanding the impact of these new trends on large-scale power systems. Taking advantage of the advancements in the field of high performance computing and parallel computing could enable accurate, wide-area T&D dynamics simulation. These comprehensive simulation capabilities would dramatically improve our ability to predict the complex interactions among DERs, customer loads and traditional utility control devices, thereby allowing higher penetrations of renewable energy, electric vehicles and energy storage.
Show less
- Title
- Advances in Distribution System State Estimation
- Creator
- Huang, Jianqiao
- Date
- 2022
- Description
-
With the increasing penetration of renewable energy in the distribution system, the system states are becoming more volatile. How to maintain...
Show moreWith the increasing penetration of renewable energy in the distribution system, the system states are becoming more volatile. How to maintain the normal operation is an urgent question to the operators. Distribution system state estimation (DSSE) is the key to the monitor and control of distribution systems.Distribution systems feature a larger number of nodes and heterogeneous measurements. Due to these features, directly employing traditional state estimation methods cannot provide fast and accurate estimation results. The existing semidefinite programming based methods show promising for the accuracy, but it is not scalable for a large system. In this thesis, we propose fast and accurate DSSE methods. First, we improve the efficiency of the state-of-art SDP-DSSE method, convex iteration (CI) method. We design a scalable convex iteration method, CDQC, by fully exploiting the radial topology of distribution system. However, the efficiency of CDQC depends on efficient feeder partition solution. It is time-consuming to get a good partition especially when the system is large. Hence, we propose a bus injection based semidefinite relaxation method (SDR-BIM) that fully exploits the radial topology of the network without the need for partitioning the networks. However, SDR-BIM has numerical issue for large scale network. This motivates us to design a branch power model based SDR-DSSE method. The proposed SDR-BPM-DSSE method improves the numerical stability and the increase in the average estimation error of voltage is less than $0.04\%$. To further improve the computational efficiency, we developed a generalized linear power flow model (GLDF) and propose an iterative method to solve the DSSE based on GLDF.Finally, the efficiency and accuracy of the proposed methods are validated on IEEE 13-bus, 37-bus, 123-bus, and 8500-node test feeders.
Show less