Search results
(1 - 1 of 1)
- Title
- RESIDENTIAL LOAD DATA COMPRESSION AND LOAD DISAGGREGATION
- Creator
- Xu, Runnan
- Date
- 2021
- Description
-
Non-Intrusive Load Monitoring (NILM) for residential applications aims to dis-aggregate the total electricity consumption of a household into...
Show moreNon-Intrusive Load Monitoring (NILM) for residential applications aims to dis-aggregate the total electricity consumption of a household into the single appliance information. For the customer side, users can change their consumption habit and save more electricity. For the utility, generation scheduling will be more accurate, efficient, and secure. Furthermore, energy management system, demand response and fault diagnosis will benefit from the real time information provided by the NILM. This dissertation first proposes a data compressed method suitable for the NILM data. Then a real time disaggregation based on the Kalman filter is proposed to obtain the appliance state information. A model-free lossless data compression method for time series in smart grids (SGs), namely, Lossless Coding considering Precision (LCP) method is proposed. The LCP method encodes the current datapoint only using the immediate previous datapoint by differential coding, XOR coding, and variable length coding and transmits the encoded data once generated. It does not use the dynamics (e.g., many previous datapoints) or prior knowledge (e.g., mathematical models) of the time series. It considers the patterns, potential applications, and associated precision to preprocess the time series and especially suits high-resolution time series with long steady periods. The LCP method features low-latency and generalizability which enables real-time data communication for different time-critical tasks. Sub-metered load profiles in REDD dataset, high-resolution LIFTED dataset, AMPds dataset and PMU dataset are used to evaluate the performance of the LCP method. The results show that the LCP method demonstrates high compression ratio, low latency, and low complexity compared to state-of-the-art Resumable Data Com-pression (RDC) method, DEFLATE based on LZ77 & Huffman coding, and Lempel-Ziv-Markov Chain Algorithm (LZMA). An online method based on the transient features of individual appliances and system steady-state characteristics is proposed to estimate the appliances’ working states. It determines the number of states for each appliance via Density-based Spatial Clustering of Applications with Noise (DBSCAN) method and models the transition relationship among different states. The states of working appliances are identified from aggregated power signals by implementing the Kalman filtering method into the Factorial Hidden Markov Model (FHMM) and by the verification of system states which are the combination of working states of individual appliances. The proposed method is event based and the use of transient features extracted from event detection could achieve fast state inference and is suitable for online load disaggregation. The proposed method is tested on high-resolution dataset such as LIFTED and outperforms other related methods, including Segment-wise Integer Quadratic Constraint Programming (SIQCP), Combinatorial Optimization (CO), and the exact FHMM (FHMM_EXACT), in terms of accuracy, f1 score, and computational time.
Show less