Zeolites are naturally occurring or synthetic crystalline microporous aluminosilicate structures with remarkable catalytic, adsorption, and... Show moreZeolites are naturally occurring or synthetic crystalline microporous aluminosilicate structures with remarkable catalytic, adsorption, and ion-exchange properties. Their unique framework of pores, channels, and cages with precise dimensions makes them an excellent fit for ion exchange and storage. Silver-exchanged zeolite (Ag/Y) composites may be incorporated into polymer matrices to create antimicrobial packaging materials. The slow release of Ag from nanosilver-enabled polymer nanocomposites (PNCs) may inhibit the growth of bacteria and other pathogens on the film’s surface, improving food quality and reducing food waste. However, the migration of Ag ions from the film into food matrices is of great concern as it could expose humans to high concentrations of a heavy metal from dietary sources. The amount of migration depends on various factors, including the potential form of Ag and its concentration in the film, the film thickness, and the storage conditions.The primary objective of this study is to investigate the effect of the form of Ag bound to the zeolite on the migration behavior of Ag from Ag/Y incorporated low-density polyethylene (LDPE) films. For Ag/Y-incorporated LDPE PNCs with distinct Ag species, the Ag migration into the water and Squirt (a commercial soft drink) was at least four times higher from films containing zeolites exchanged with ionic Ag versus zeolites exchanged with nanoparticulate Ag. Similarly, migration into 9 wt % aqueous Domino sugar (granulated sucrose) solution was seven times higher in the ionic silver-incorporated film than in the nanoparticulate Ag film. This study suggests that it is important to consider the form of Ag in silver-exchanged zeolite while producing packaging materials since the potential form of Ag in the PNCs might significantly affect Ag migration behavior. Show less