The Expectation-Maximization (EM) algorithm is routinely used for maximum likelihood estimation in latent class analysis. However, the EM... Show moreThe Expectation-Maximization (EM) algorithm is routinely used for maximum likelihood estimation in latent class analysis. However, the EM algorithm comes with no global guarantees of reaching the global optimum. We study the geometry of the latent class model in order to understand the behavior of the maximum likelihood estimator. In particular, we characterize the boundary stratification of the binary latent class model with a binary hidden variable. For small models, such as for three binary observed variables, we show that this stratification allows exact computation of the maximum likelihood estimator. In this case we use simulations to study the maximum likelihood estimation attraction basins of the various strata and performance of the EM algorithm. Our theoretical study is complemented with a careful analysis of the EM fixed point ideal which provides an alternative method of studying the boundary stratification and maximizing the likelihood function. In particular, we compute the minimal primes of this ideal in the case of a binary latent class model with a binary or ternary hidden random variable. Show less

We investigate the problem of completing partial matrices to rank-one matrices in the standard simplex ∆mn−1. The motivation for studying this... Show moreWe investigate the problem of completing partial matrices to rank-one matrices in the standard simplex ∆mn−1. The motivation for studying this problem comes from statistics: A lack of eligible completion can provide a falsification test for partial observations to come from the independence model. For each pattern of specified entries, we give equations and inequalities which are satisfied if and only if an eligible completion exists. We also describe the set of valid completions, and we optimize over this set. Show less

In [2] Buczyn ́ska and Wi ́sniewski showed that the Hilbert polynomial of the algebraic variety associated to the Jukes-Cantor binary model on... Show moreIn [2] Buczyn ́ska and Wi ́sniewski showed that the Hilbert polynomial of the algebraic variety associated to the Jukes-Cantor binary model on a trivalent tree depends only on the number of leaves of the tree and not on its shape. We ask if this can be generalized to other group-based models. The Jukes-Cantor binary model has Z2 as the underlying group. We consider the Kimura 3-parameter model with Z2 × Z2 as the underlying group. We show that the generalization of the statement about the Hilbert polynomials to the Kimura 3-parameter model is not possible as the Hilbert polynomial depends on the shape of a trivalent tree. Show less