Search results
(1 - 2 of 2)
- Title
- Optimization of Large-Scale NOMA With Incidence Matrix Design and Physical Layer Security
- Creator
- Hwang, Eli W.
- Date
- 2024
- Description
-
The Non-Orthogonal Multiple Access (NOMA) system is recognized for its capability to achieve higher spectral efficiency and massive...
Show moreThe Non-Orthogonal Multiple Access (NOMA) system is recognized for its capability to achieve higher spectral efficiency and massive connectivity. NOMA is intended to transmit massive user communications. The incidence matrix governs the relationship between users and resources for the Code domain NOMA (CD-NOMA). However, NOMA studies focus less on the design and optimization of the incidence matrix.Therefore, this thesis aims to investigate the development of a secure and large-scale NOMA system based on incidence matrix design. The main contributions are outlined as follows: Firstly, this research introduces a novel NOMA system. Distinct from existing studies, the NOMA system is based on combinatorial design. This innovative approach, coupled with a unique constellation design, eliminates the surjective mapping from the linear adding data of multiusers, reducing the complexity of constellation design and Multiuser Detection (MUD). The characteristics of the incidence matrix designs, Simple Orthogonal Multi-Arrays (SOMA), are explored, which display a distinct Latin Square pattern. The SOMA design's unique structure allows for the creation of a highly flexible and fair resource allocation matrix. The NOMA system's theoretical performance analysis equations are established, supporting dynamic adaptability and optimization. The design is validated by Monte Carlo simulation. Compared to other NOMA schemes, it offers higher degrees of freedom and lower complexity while maintaining graceful error rates to transmit a larger number of users. Secondly, a novel NOMA system utilizing incidence matrix information in the uplink is investigated. The incidence matrix pattern is exploited for MUD to achieve large-scale user connectivity. The incidence matrix is designed based on two critical mathematical concepts: parallel classes in hypergraph theory and orthogonal arrays (OAs) in combinatorial designs. Unlike other NOMA schemes, which require modification of their receiver and transmitter to decode superimposed multiuser signals, the unique pattern of the OA structure enables the use of conventional modulators. Consequently, the system load increases and the complexity and latency are reduced. The order of magnitude of the decoding complexity can be significantly reduced from O(N^3) to O(N) compared to the conventional minimum mean-square estimation (MMSE) decoder. Monte Carlo simulation validates that this novel NOMA system outperforms other NOMA designs in terms of error rate, data rate, and system size. Finally, a reconfigurable convolutional encoder design that integrates security and error correction based on physical layer security (PLS) and randomness is developed. This design addresses concerns over privacy, security, and reliability of Internet of Things devices in edge computing networks. The lightweight Convolutional encoders are designed to ensure security by updating the transfer function dynamically with user data. The reconfigurability of the design is achieved by replacing the fixed adder that represents the generator polynomials with the switch adder, enabling the use of 87 billion distinct updating structures, thereby enhancing the versatility of the design. BER-based PLS paradigms are demonstrated in the simulation. In the simulation, the robustness and randomness of this design are further validated through tests suggested by the National Institute of Standards and Technology for cryptographically secure pseudorandom number generators, such as the monobits, longest one, and run tests.
Show less
- Title
- Optimization of Large-Scale NOMA With Incidence Matrix Design and Physical Layer Security
- Creator
- Hwang, Eli W.
- Date
- 2024
- Description
-
The Non-Orthogonal Multiple Access (NOMA) system is recognized for its capability to achieve higher spectral efficiency and massive...
Show moreThe Non-Orthogonal Multiple Access (NOMA) system is recognized for its capability to achieve higher spectral efficiency and massive connectivity. NOMA is intended to transmit massive user communications. The incidence matrix governs the relationship between users and resources for the Code domain NOMA (CD-NOMA). However, NOMA studies focus less on the design and optimization of the incidence matrix.Therefore, this thesis aims to investigate the development of a secure and large-scale NOMA system based on incidence matrix design. The main contributions are outlined as follows: Firstly, this research introduces a novel NOMA system. Distinct from existing studies, the NOMA system is based on combinatorial design. This innovative approach, coupled with a unique constellation design, eliminates the surjective mapping from the linear adding data of multiusers, reducing the complexity of constellation design and Multiuser Detection (MUD). The characteristics of the incidence matrix designs, Simple Orthogonal Multi-Arrays (SOMA), are explored, which display a distinct Latin Square pattern. The SOMA design's unique structure allows for the creation of a highly flexible and fair resource allocation matrix. The NOMA system's theoretical performance analysis equations are established, supporting dynamic adaptability and optimization. The design is validated by Monte Carlo simulation. Compared to other NOMA schemes, it offers higher degrees of freedom and lower complexity while maintaining graceful error rates to transmit a larger number of users. Secondly, a novel NOMA system utilizing incidence matrix information in the uplink is investigated. The incidence matrix pattern is exploited for MUD to achieve large-scale user connectivity. The incidence matrix is designed based on two critical mathematical concepts: parallel classes in hypergraph theory and orthogonal arrays (OAs) in combinatorial designs. Unlike other NOMA schemes, which require modification of their receiver and transmitter to decode superimposed multiuser signals, the unique pattern of the OA structure enables the use of conventional modulators. Consequently, the system load increases and the complexity and latency are reduced. The order of magnitude of the decoding complexity can be significantly reduced from O(N^3) to O(N) compared to the conventional minimum mean-square estimation (MMSE) decoder. Monte Carlo simulation validates that this novel NOMA system outperforms other NOMA designs in terms of error rate, data rate, and system size. Finally, a reconfigurable convolutional encoder design that integrates security and error correction based on physical layer security (PLS) and randomness is developed. This design addresses concerns over privacy, security, and reliability of Internet of Things devices in edge computing networks. The lightweight Convolutional encoders are designed to ensure security by updating the transfer function dynamically with user data. The reconfigurability of the design is achieved by replacing the fixed adder that represents the generator polynomials with the switch adder, enabling the use of 87 billion distinct updating structures, thereby enhancing the versatility of the design. BER-based PLS paradigms are demonstrated in the simulation. In the simulation, the robustness and randomness of this design are further validated through tests suggested by the National Institute of Standards and Technology for cryptographically secure pseudorandom number generators, such as the monobits, longest one, and run tests.
Show less