Analyzer-based Imaging is a promising phase contrast technology with huge potential for soft tissue imaging. Unlike absorption-contrast... Show moreAnalyzer-based Imaging is a promising phase contrast technology with huge potential for soft tissue imaging. Unlike absorption-contrast methods, phase-contrast modalities measure refraction and scatter properties of the tissue. Such images are particularly suitable for applications such as mammography.The potential advantages of the Analyzer-Based Imaging technology are three fold. First, it shows exceptional contrast when imaging soft tissue, which produces extremely sharp images of the breast compared to absorption images. Second, it provides additional insights about the breast. In particular, the density and scatter images of breast micro-calcifications can help assessing their malignancy better than common mammograms. Third, it has shown potential to reduce the radiation dose deposited in the breast tissue by an order of magnitude compared to common mammography procedures.In the past, Analyzer-Based Imaging has been mainly developed with synchrotron light sources and focused on obtaining micro-resolution images. For such applications, quasi-monoenergetic beams are required. Nevertheless, monochromatic radiation can be easily obtained in synchrotron setups by filtering the source’s spectrum with crystal optics. Since synchrotrons are very brilliant sources, most of their radiation can be filtered out and still obtain low noise phase contrast images. Nowadays, there is a lot of interest in transitioning the technology to a table-top system using compact X-ray sources for mammography. However, compact sources are several orders of magnitude less brilliant, which causes extremely long exposure times. Additionally, the trade-off between exposure time (throughput) and resolution in compact analyzer-based imaging systems is yet to be completely understood.In this thesis, we lay down the principles to develop compact analyzer-based imaging systems capable of imaging a full-sized breast under ten seconds, while ensuring a resolution under 100 microns. This represents a major breakthrough towards obtaining a clinical analyzer-based mammography system. Additionally, we explore a unique application of the analyzer-based technology for breast diagnosis consisting on the assessment of the chemical composition of micro-calcifications. In conjunction with ABI’s unparalleled image quality, determining the chemical composition of micro- calcifications can help to mitigate the high false positive rate in common mammography. Show less