Search results
(9,701 - 9,720 of 9,741)
Pages
- Title
- Pencil drawing, 1973
- Creator
- Henry, Mary Dill, 1913-2009
- Date
- 1973-10-01
- Description
-
Untitled pencil drawing by Mary Henry, possibly a sketch or study made during the development of a larger piece. Inscription: "Somber dark, 3...
Show moreUntitled pencil drawing by Mary Henry, possibly a sketch or study made during the development of a larger piece. Inscription: "Somber dark, 3 panels - black brown blue with white stripes."
Show less - Collection
- Mary Dill Henry Papers, 1913-2021
- Title
- Colored pencil drawing, undated
- Creator
- Henry, Mary Dill, 1913-2009
- Description
-
Untitled colored pencil drawing by Mary Henry, date unknown.
- Collection
- Mary Dill Henry Papers, 1913-2021
- Title
- Photograph of the Aaron Galleries booth at the Art 20 art fair, including Mary Henry's The Chelsea Way, New York, New York, 2006
- Date
- 2006
- Description
-
Photograph of the Aaron Galleries Booth at the Art 20 exhibition, at Park Place Armory in 2006, including Mary Henry's painting The Chelsea...
Show morePhotograph of the Aaron Galleries Booth at the Art 20 exhibition, at Park Place Armory in 2006, including Mary Henry's painting The Chelsea Way visible at right. Inscription on verso: "Art 20 - Park Ave. Armory 2006 Mary Henry 'The Chelsea Way' on the aisle Aaron Galleries Booth."
Show less - Collection
- Mary Dill Henry Papers, 1913-2021
- Title
- DEVELOPMENT AND APPLICATION OF A NATIONALLY REPRESENTATIVE MODEL SET TO PREDICT THE IMPACTS OF CLIMATE CHANGE ON ENERGY CONSUMPTION AND INDOOR AIR QUALITY (IAQ) IN U.S. RESIDENCES
- Creator
- Fazli, Torkan
- Date
- 2020
- Description
-
Americans spend most of their time inside residences where they are exposed to a number of pollutants of both indoor and outdoor origin....
Show moreAmericans spend most of their time inside residences where they are exposed to a number of pollutants of both indoor and outdoor origin. Residential buildings also account for over 20% of total primary energy consumption in the U.S. and a similar proportion of greenhouse gas emissions. Moreover, climate change is expected to affect building energy use and indoor air quality (IAQ) through both building design (i.e., via our societal responses to climate change) and building operation (i.e., via changing meteorological and ambient air quality conditions). The overarching objectives of this work are to develop a set of combined building energy and indoor air mass balance models that are generally representative of both the current (i.e., ~2010s) and future (i.e., ~2050s) U.S. residential building stock and to apply them using both current and future climate scenarios to estimate the impacts of climate change and climate change policies on building energy use, IAQ, and the prevalence of chronic health hazards in U.S. homes. The developed model set includes over 4000 individual building models with detailed characteristics of both building operation and indoor pollutant physics/chemistry, and is linked to a disability-adjusted life years (DALYs) approach for estimating chronic health outcomes associated with indoor pollutant exposure. The future building stock model incorporates a combination of predicted changes in future meteorological conditions, ambient air quality, the U.S. housing stock, and population demographics. Using the model set, we estimate the total site and source energy consumption for space conditioning in U.S. residences is predicted to decrease by ~37% and ~20% by mid-century (~2050s) compared to 2012, respectively, driven by decreases in heating energy use across the building stock that are larger than coincident increases in cooling energy use in warmer climates. Indoor concentrations of most pollutants of ambient origin are expected to decrease, driven by predicted reductions in ambient concentrations due to tighter emissions controls, with one notable exception of ozone, which is expected to increase in future climate scenarios. This work provides the first known estimates of the potential magnitude of impacts of expected climate changes on building energy use, IAQ, and the prevalence of chronic health hazards in U.S. homes.
Show less
- Title
- An Alternative Approach for the Jefferson Lab Electron-Ion Collider Ion Accelerator Complex
- Creator
- Martinez Marin, Jose Luis
- Date
- 2020
- Description
-
An assessment by the National Academy of Sciences (NAS) of the scientific merit for a future Electron Ion Collider (EIC) in the US concluded...
Show moreAn assessment by the National Academy of Sciences (NAS) of the scientific merit for a future Electron Ion Collider (EIC) in the US concluded that such a facility would be unique in the world and enable indispensable research on current and compelling scientific questions. This assessment confirmed the recommendations of the 2015 Nuclear Science Advisory Committee (NSAC) for an EIC with highly polarized beams of electrons and ions, sufficient luminosity and sufficient, variable center-of-mass energy. Proposals were requested for a cost-effective design that uses existing accelerator infrastructure to reduce the risk; one of two major proposals submitted for consideration originated from the Thomas Jefferson National Accelerator Facility (JLab). The Jefferson Laboratory Electron-Ion Collider (JLEIC) would use the Continuous Electron Beam Accelerator Facility (CEBAF) at JLab as a full-energy electron injector. The primary accelerator challenges are twofold: producing and maintaining a high degree of polarization for both beams, and achieving high luminosity. This thesis project was part of an effort to produce an alternative, low-risk and cost- effective design for the JLEIC ion complex. The primary goal was not to find a replacement for the JLEIC ion complex design, but rather to investigate alternative options for the different components of the ion complex that could lower the overall cost, reduce its footprint, mitigate risk, and identify possible staging or future upgrades of the project. The platform for this thesis was the alternative design for the JLEIC ion complex that included (1) a more compact ion linac, (2) two staged ion boosters instead of one before injection to the collider ring, with a more compact and lower energy Pre-Booster ring as the first stage, and (3) the dual use of the electron storage ring (e-ring) as a second stage ion Large Booster.The alternative design was first investigated for medium energy (65-GeV center-of-mass), and was then upgraded following the National Academy of Sciences (NAS) review to higher energy (100-GeV center-of-mass). Developing a more cost-effective design and meeting all the requirements is challenging due to several constraints imposed on the alternative approach -- for example, the use of only room-temperature magnets for both ion boosters. There are also space limitations, the need to keep the shape and crossing angle of the ion Large Booster the same as the collider ring, ensuring reasonable length and aperture requirements for the magnets, and avoiding transition crossing for all the rings, which can cause beam dilution and instabilities.Development of both the Medium-Energy and the High-Energy options is presented. The Medium-Energy option consists of a 135 MeV injector linac, a 3 GeV octagonally-shaped Pre-Booster ring and a 11 GeV Large Booster. The High-Energy option consists of a 150 MeV (~ 40 MeV/u for Pb) injector linac, a 8 GeV (~ 2.04 GeV/u for Pb) non figure-8 Pre-Booster ring and a 40 GeV proton (~ 16 GeV/u for Pb) Large Booster, which would also serve as the electron storage ring (e-ring). The figure-8 shape of the Large Booster helps to maintain high polarization. High luminosity is achieved following a strategy to have a high bunch repetition rate of the colliding beams, very short bunch lengths, and small transverse emittances; the main concern here is to provide a lattice that is consistent with these requirements. The main results reported are the lattice design optimization and consolidation, benchmarking of the beam optics with different codes such as ELEGANT, COSY-Infinity, MAD-X, TRACE-3D, and Zgoubi, and spin resonance simulation results. Spin dynamics studies were performed for the linac and the Pre-Booster, and mechanisms to preserve the polarization are proposed. Beam formation and non-linear effects such as chromaticity, space charge, and intra-beam scattering were also studied to gain understanding of how the alternative approach could affect the baseline beam formation scheme and to ensure that the beam requirements are met through the injector chain with this alternative approach. It was shown that the polarization can be preserved through the alternative ion complex even with the more compact linac and a Pre-Booster that does not have a figure-8 shape by using a sufficiently long spin correction solenoid in the linac and a partial Siberian snake in the Pre-Booster. The baseline beam formation scheme could still be used to reach the required beam characteristics for collider injection. Cooling is not needed in the more compact Pre-Booster, and the large, higher energy booster helps to avoid space charge effects at extraction. This study has confirmed the effectiveness of the alternative approach as concerns the optics, acceleration, polarization, and beam formation. The ion injectors are sufficiently compact, and the ion Large Booster size and shape are consistent with the e-ring requirements, enabling the desired dual functionality of that machine. This work created a basis for design discussions during the JLEIC design process. The final High-Energy design for the JLEIC ion complex adopted design features that came from the alternative design studies, which were derived in part from this work—in particular, the shorter, lower-energy linac, the use of two boosters in the injection chain before the collider ring, and the ability to have only room-temperature magnets in the boosters, with superconducting magnets used only in for the collider ring.
Show less
- Title
- NON-DESTRUCTIVE CANCER DETECTION IN LYMPH NODE USING PAIRED-AGENT MOLECULAR IMAGING
- Creator
- Li, Chengyue
- Date
- 2020
- Description
-
Identification of cancer spread to tumor-draining lymph nodes through lymph node dissection and histology offers critical information for...
Show moreIdentification of cancer spread to tumor-draining lymph nodes through lymph node dissection and histology offers critical information for guiding treatment in many cancer types, including breast, melanoma, head and neck, lung and gynecologic cancers, as the lymphatic system serves as the primary route for metastasis. Lymph node biopsy involves localization of tumor-draining lymph nodes, followed by their surgical removal and histological assessment. However, the procedure is associated with overtreatment concerns and some considerable morbidity, including lymphedema, seroma formation, and restricted arm movement. Moreover, conventional histological analyses are time-consuming and laborious, yet pathologists generally examine less than 1% of the volume of each lymph node, leading to undetected micrometastasis (tumor clusters 0.2-2mm in diameter) in 30-60% of cases. In response to these limitations in standard lymph node dissection protocol, there is a significant need for the development of lymph node imaging strategies that are capable of identifying metastatic cancer as a means of staging a patient’s cancer without the need for invasive and time-intensive conventional pathology. Paired-agent imaging molecular imaging protocols have been spearheaded by our group and entail co-administration of a control imaging agent with a molecular targeted agent as a way to account for nonspecific uptake and retention. The overall goal of my thesis was to methodically design, optimize and evaluate the clinical utility of a paired-agent lymph node imaging protocol to achieve levels of sensitivity and specificity in nodal staging not possible with current conventional methods, less invasively and at a fraction of the time and cost.
Show less
- Title
- A Multi-level Data Integration Approach for the Convergence of HPC and Big Data Systems
- Creator
- Feng, Kun
- Date
- 2020
- Description
-
HPC is moving towards exascale (10^18 operations per second) following the trend that has continued for over half a century. Such an extremely...
Show moreHPC is moving towards exascale (10^18 operations per second) following the trend that has continued for over half a century. Such an extremely compelling computing power brings huge opportunities for scientists to explore their problems with larger sizes and finer granularity. As a result, the data volume produced and consumed by extreme-scale computing has increased dramatically. To gain useful scientific insights, scientists analyze tremendous amounts of data, which stresses the storage systems and requires efficient data access. Besides the data volume increase, the variety of I/O subsystems grows as well to meet the drastically different, often conflicting I/O requirements of numerous applications. HPC and BD, as two major camps of extreme-scale computing, have been developed separately for a long time and diverged from computing and storage paradigms. However, recent developments have proven the convergence of them leads to more efficient scientific output. Hence, unification between these ecosystems is necessary to accelerate extreme-scale computing with the collaboration of applications from both camps. Therefore, integrated I/O has become a major issue that needs to be addressed as the extreme computing community moves forward.This study explores improvement by proposing a new integrated data access system for extreme-scale computing. We enhance the BD framework to adapt to the change of integrated data access requirement by enabling direct processing of scientific data from PFS at the HPC site. Our framework can perform up to 8x faster than the state-of-the-art solutions in representative workloads. We design a new advanced I/O middleware service to utilize data aggregation resources to facilitate integrated data access in scientific workflows with both HPC and BD applications. Our middleware service can reach up to 10x speedup against the default solution and 133% better performance than existing solutions. We propose a novel storage integration solution on the storage side to unite all the storage resources, to unify the namespace across all the storage systems, and provide an ultimate integrated data access service. The integrated solution can speed up a real workflow with integrated data access requirements by up to 6.86x over existing solutions. The three-level integration at the application level, middleware level, and storage level provide us a systematic hierarchical I/O integration. Our implementation results show that the three-level optimized design and implementation is feasible and effective. It improves the state-of-the-art solutions and helps us to achieve an enhanced I/O system towards extreme-scale computing to support both HPC and BD applications.
Show less
- Title
- Effect of Phosphorus Additions on Polycrystalline Ni-base Superalloys
- Creator
- Li, Linhan
- Date
- 2020
- Description
-
In recent years, advanced polycrystalline Ni-base superalloys have been developed with elevated levels of γ′ forming elements and high level...
Show moreIn recent years, advanced polycrystalline Ni-base superalloys have been developed with elevated levels of γ′ forming elements and high level of refractory elements as solid-solution strengtheners in an effort to extend the temperature capability. Moreover, the properties of the grain boundaries become more important and this necessitates the need to study of effects of minor additions of interstitial P for grain structure optimization. Due to the increased level of refractory elements employed, powder-processed Ni-base superalloys tend to have a high propensity to form Topologically Close-Packed (TCP) phases, which was found to be further promoted by the addition of P. A systematic study of the phase stability of high refractory content powder-processed Ni-base superalloys with three levels of P additions revealed an increased tendency to form Laves phase as a function of P additions. Additions of P were discovered to not only depress the incipient melting temperature to stabilize the eutectic Laves phase, but also promote Laves phase formation during the aging heat treatment and the following isothermal exposure. During the thermal exposure, excessive formation of Laves phase promoted the formation of a basket-weave structure comprised of an intertwined mixture of Laves and Sigma phase. The stabilization of the Laves phase structure due to P additions was found to be consistent with Density Functional Theory (DFT) calculations and could be rationalized through structure maps that relate the valence electron concentration and relative size differences. Additionally, a variation of grain structure obtained via either a sub-solvus or super-solvus solution heat treatment was noted to some extent vary the P segregation level at high-angle grain boundaries, thereby affecting the phase stability. For a sub-solvus solutioned grain structure that possessed a high length density of high-angle grain boundaries, the Laves phase formation was depressed for alloys with a low level of P addition. However, the phase stability variation associated with Laves phase formation was moderate when high concentrations of P were present. The effect of P addition on the γ′ microstructure variation is limited, which was confirmed by microstructure observations as well as through the short-term 0.6%-strain stress relaxation tests at high temperature. Heat treatment variations to modify the secondary and tertiary γ′ microstructures were discovered to exert a much more significant influence on the 0.6%-strain stress relaxation behavior. When a higher initial strain of 2% was applied, the stress relaxation behavior of the powder-processed Ni-base superalloys was found to be microstructure independent. The creep ductility of Waspaloy was determined to be notably reduced by the P additions due to the enhanced precipitation of M23C6 carbide at the grain boundaries. Excessive precipitation of M23C6 carbide increased the likelihood of brittle fracture when tested under low temperature/high stress creep conditions. However, the P addition as well as the excessive precipitation of M23C6 carbide did not impact the creep behavior as the dominant deformation was transgranular in nature when tested under high temperature/low stress conditions.
Show less
- Title
- ATOMIC LAYER DEPOSITION STUDIES OF GOLD AND TUNGSTEN DISULFIDE
- Creator
- Liu, Pengfei
- Date
- 2020
- Description
-
In the last few decades, atomic layer deposition (ALD), as a vapor deposition technique and a powerful thin film fabrication method, has...
Show moreIn the last few decades, atomic layer deposition (ALD), as a vapor deposition technique and a powerful thin film fabrication method, has received more and more attention in many fields. A variety of materials can be made by ALD; however, the progress of ALD application is still necessary. Meanwhile, in the process of film fabrication by ALD, the interfacial chemistry is interesting and well worth studying. This dissertation mainly described the process of exploring two materials, gold and tungsten disulfide, fabrication and related content.For the portion of applying ALD in gold thin film deposition, a relatively comprehensive process was explored, studied, analyzed and discussed. Start with the synthesis of the gold precursor, Me2Au(S2CNEt2), the synthetic reaction was explored. By modified the conditions, such as solvent system, twice the yield as previously reported in the literature were achieved. Next, the application of in situ microbalance and infrared spectroscopic technique illuminate the organometallic chemistry during the gold thermal ALD process with Me2Au(S2CNEt2) and ozone. In situ quartz crystal microbalance (QCM) studies give an explanation for the nucleation delay and island growth of gold on a freshly prepared aluminum oxide surface. In situ infrared spectroscopy provides insight to study the surface chemistry during the process, which supports an oxidized gold surface mechanism. The epitaxy of gold thin film was explored by X-ray diffraction. The thermal ALD gold on various substrates reveals out-of-plane orientation, however, in-plane orientation was only existed in the gold film on mica. For the portion of applying ALD in tungsten disulfide fabrication, the early work started with studying the effect of interfaces upon crystallinity. The sulfuration of indium thin film with different interface was explored. Then the idea of “interfaces” was brought into the process of tungsten compounds fabrication. Due to this “indirect” method which made tungsten disulfide by sulfurizing ALD made tungsten compounds (eg. tungsten oxide and tungsten nitride) could not reduce the reaction temperature of tungsten disulfide synthesis to less than 400 °C. Sequently, the “direct” way of tungsten disulfide fabrication which directly utilized tungsten precursor and H2S in ALD system was tested and explored. With the tungsten precursors developed by our group, finally, tungsten disulfide could be fabricated at the temperature as low as 125 °C.
Show less
- Title
- Resilience Enhancement of Critical Cyber-Physical Systems with Advanced Network Control
- Creator
- Liu, Xin
- Date
- 2020
- Description
-
Critical infrastructures are the systems whose failures would have a debilitating impact on national security, economics, public health or...
Show moreCritical infrastructures are the systems whose failures would have a debilitating impact on national security, economics, public health or safety, or any combination of those matters. It is important to improve those systems' resilience, which is the ability to reduce the magnitude and/or duration of disruptive events. However, today’s critical infrastructures, such as electrical power system and transportation system, are deploying advanced control applications with increasing scale and complexity, which leads to the migration of their underlying communication infrastructures from simple and proprietary networks to off-the-shelf network technologies (e.g., IP-based protocols and standards) to handle the intensive and heterogeneous traffic flows. On one hand, this migration provides an opportunity for both academic and industry communities to develop novel ideas on top of existing schemes; on the other hand, it exposes more vulnerabilities for cyber-attacks. Moreover, since the large-scale power system may choose leased networks from Internet service providers (which is a critical infrastructure itself), there exists an interdependency relationship between power and communication infrastructures, where the power transmission control requires message delivery services while the network devices rely on the power supply. These problems raise research challenges to improve the system resilience of critical cyber-physical systems.In this thesis, we focus on resilience enhancement of critical infrastructures from the communication network's aspects. The application domain includes both power and transportation systems. For power systems, we first apply advanced network control techniques (i.e., software-defined network (SDN) and fibbing control scheme) in the transmission grid communication network to improve the grid status restoration process under network failures and cyber-attacks. We develop a unified system model that contains both transmission grid monitoring system (i.e., phasor measurement unit (PMU) network) and communication network, and formalize a mixed-integer linear programming (MILP) problem to minimize the recovery time of system observability with the power and communication domain constraints. We evaluate the system performance regarding the recovery plan generation and installation using IEEE standard systems. However, the advanced network-based control scheme could also lead to problems, since it requires a power supply for the network devices. Thus, we investigate the interdependency relationship between the power grid and communication network and its impact on system resilience. We conduct a survey work that summarizes existing research based on two dimensions: objectives (i.e., failure analysis, vulnerability analysis, failure mitigation, and failure recovery) and methodologies (i.e., analytical solutions, co-simulation, and empirical studies). We also identify the limitations of existing works and propose potential research opportunities in this demanding area. Lastly, based on the review work, we conduct research that focuses on fast power distribution system restoration that involves interdependency constraints. When a natural disaster happens, both power and communication components might be damaged. Furthermore, since they are dependent on each other's service to function correctly, the failures may propagate to the hardware/software that are not affected initially. In this work, we focus on the recovery stage where the failed components in the system are already fully detected and isolated. We construct a mathematical model of the co-existing power and communication system and use optimization techniques to produce a crew dispatch plan that restores power as fast as possible by coordinating damage repairing, switch operation, and communication supply processes. We evaluate the restoration efficiency on the IEEE standard system using both analytical analysis and discrete-event simulation.For the second application domain, railway transportation system, we focus on evaluating the resilience of its communication system that exchanges control and monitoring messages with both on-board driver cabin and remote control center. We use advanced discrete-event simulation techniques to achieve a high-fidelity model of the network which makes the evaluation more concrete and realistic. For the Ethernet-based on-board train communication network (TCN), we develop a parallel simulation platform according to the IEC standard and use it to conduct a case study of a double-tagging VLAN attack on this control network. Another component of the railway communication system is the train-to-ground network that enables the communication between the driving system on the train and the control center that issues commands such as the movement authority messages. We customize the NS3 network simulator to model the LTE-based protocol with a real high-speed train trace dataset from public sources. We evaluate the resilience of the cellular network specifically on the handover process, which happens when the train travels from one base station to another. Due to the high-speed nature, the handover success rate is impacted and there are many protocol-based solutions proposed in this research area. We use the high-fidelity simulation model to evaluate some of them and compare the pros and cons.
Show less
- Title
- The role of fibrillar collagen in tissue function
- Creator
- Ma, Yin
- Date
- 2020
- Description
-
Fibrillar collagen plays an important role in maintaining soft tissue integrity and providing chemical and physical cues for cell fate...
Show moreFibrillar collagen plays an important role in maintaining soft tissue integrity and providing chemical and physical cues for cell fate decisions. Collagen remodeling, which alternates the amount, distribution, and biomechanics of collagen, primarily type I (COLI) and type III (COLIII), can change tissue properties. This process is essential not only in biological developments but also in pathological processes. Thus, it is meaningful to understand the correlation between collagen remodeling and tissue dysfunction and investigate the cells' response to fibrous protein matrices. However, current studies in biochemical analysis of collagen and biomechanical study of tissues were carried out at different scales. So it is hard to correlate the data to draw solid conclusions. In this thesis research, we used two collagen disorder associated pathological conditions, pelvic organ prolapse (POP) and micropapillary serous carcinoma (MPSC) of the fallopian tube, as models to unravel the correlation between tissue dysfunctions and the impaired microenvironment relevant to the composition, nanostructure, and biomechanics of a collagen fibril. In the case of POP, we found the collagen fibers in tissues of POP patients were less abundant but stiffer than those of non-POP individuals, implying a loose and fragile matrix that is weakly integrated with other components of the connective tissue to provide adequate support of the pelvic organs. On the other hand, the collagen D-period, the characteristic banding feature which signals the proper assembly of collagen molecules, decreased in POP tissues. We surmised that the molecular level changes of collagen in POP were accountable for the weak matrix mechanics, verified by a systematic in vitro study. We also examined the collagen matrix alternation in MPSC of the fallopian tube, which is thought to cause ovarian cancer via metastasis. Since cancer metastasis is often related to collagen remodeling, we examined the collagen matrix alternation in this disease. We observed the heterogeneous distribution of COLI and COLIII in the papillae of the tumor tissue. Noticeably, COLI was accumulated at the papillae tip, whereas COLIII was dominant at the papillae base. We also observed the absence of collagen matrix between the micropapillary tip and the fibrosis base. Such an uneven collagen distribution implies that the matrix exerted distinctive forces on the tumor cells to regulate their behaviors, including cell migration, directional growth, and shedding from the primary tumor to initiate metastasis. These conclusions have been supported by the results of our in vitro experiments. In investigating the effect of the microenvironment on cell behavior, we established and validated an AFM-based method to collect and quantitatively analyze the mRNA samples from targeted live cells at the single-cell level. This method overcomes issues, such as severe cell damage or even cell death, the capability of time-dependent and in situ analyses, in current methods. The application of the method in studying heterogeneous gene expression in single cells and the interaction between cancer cells and cancer-associated fibroblasts was demonstrated. We also demonstrated that this method can be potentially used to quantitatively analyze the gene expression level changes in a targeted cell in response to the microenvironment.
Show less
- Title
- FEARING FORGETTING? DEVELOPMENT OF A SCALE TO ASSESS ATTITUDES ABOUT DEMENTIA IN THE LAY POPULATION
- Creator
- Ogu, Precious N
- Date
- 2020
- Description
-
Individuals with dementia show a progressive decline in cognitive functioning which results in an inability to complete activities of daily...
Show moreIndividuals with dementia show a progressive decline in cognitive functioning which results in an inability to complete activities of daily living (American Psychiatric Association, 2013). Early diagnosis of dementia is a positive prognostic indicator (World Alzheimer Report, 2011) and is widely regarded as an important pre-condition for improving dementia care (Kim et al., 2015; Vernooij-Dassen et al., 2005). However, negative attitudes and stigma towards dementia could possibly interfere with an individual’s willingness to recognize or accept the idea of themselves having the disease through label avoidance. The goal of the present study was to contribute to understanding the perception of dementia by developing a quantitatively derived and psychometrically validated measure that encompasses the positive and negative attitudes towards dementia held by people without dementia. This study also explored the potential association between negative attitudes about dementia and lack of familiarity with dementia as familiarity with individuals with mental illness is related to stigmatizing attitudes towards mental illness. These goals were achieved by a principal components analysis (PCA) of 56 modified items from extant and well-validated mental illness attitude scales (Community Attitudes to Mental Illness, CAMI, Taylor & Dear, 1981; Social Distance Scale, SDS, Link, 1986; Depression Stigma Scale, DSS, Griffiths et al., 2004). Convergent validity was assessed by examining the relationship between the final derived measure and a construct associated with negative attitudes about mental illness (Mental Retardation Attitude Inventory-Revised, MRAI-R). Discriminant validity was assessed by examining the relationship between the final measure and a construct that should be unrelated to negative attitudes about mental illness (Belief in a Just World Scale, BJW). Finally, exploratory analyses were conducted to assess if attitudes measured by the newly created scale are related to participants’ familiarity with dementia (Level of Familiarity Scale, LoFS, Corrigan et al., 2001). 400 adults with no history of dementia were recruited through Amazon’s MTurk. Participants were compensated by a credit to their Amazon account upon completion of the survey. The PCA supported 2 conceptually different (not method variance) latent components titled Negative Attitudes and Positive Attitudes. These 2 components comprise the Attitudes to Dementia Inventory (ADI). Construct validity was partially supported for each component of the ADI. Degree of familiarity with dementia was not associated with negative or positive attitudes about dementia. Overall, this study is an important contribution to dementia attitudes research. Given the identification of Negative Attitudes and Positive Attitudes have been identified as distinct dimensions of dementia attitudes, the ADI can be used to further investigate how negative reactions towards dementia might cause delays in initiating medical intervention and treatment, and also to examine whether positive attitudes provide any protections against the probable effects of negative attitudes on stigma and help-seeking behaviors. Since the early recognition and diagnosis of dementia is widely regarded as an important condition for improving dementia care (Kim et al., 2015; Vernooij-Dassen, et al., 2005), the ADI can be used to inform stigma-prevention, which hopefully translates into improved help-seeking behaviors.
Show less
- Title
- IMPACT OF DATA SHAPE, FIDELITY, AND INTER-OBSERVER REPRODUCIBILITY ON CARDIAC MAGNETIC RESONANCE IMAGE PIPELINES
- Creator
- Obioma, Blessing Ngozi
- Date
- 2020
- Description
-
Artificial Intelligence (AI) holds a great promise in the healthcare. It provides a variety of advantages with its application in clinical...
Show moreArtificial Intelligence (AI) holds a great promise in the healthcare. It provides a variety of advantages with its application in clinical diagnosis, disease prediction, and treatment, with such interests intensifying in the medical image field. AI can automate various cumbersome data processing techniques in medical imaging such as segmentation of left ventricular chambers and image-based classification of diseases. However, full clinical implementation and adaptation of emerging AI-based tools face challenges due to the inherently opaque nature of such AI algorithms based on Deep Neural Networks (DNN), for which computer-trained bias is not only difficult to detect by physician users but is also difficult to safely design in software development. In this work, we examine AI application in Cardiac Magnetic Resonance (CMR) using an automated image classification task, and thereby propose an AI quality control framework design that differentially evaluates the black-box DNN via carefully prepared input data with shape and fidelity variations to probe system responses to these variations. Two variants of the Visual Geometric Graphics with 19 neural layers (VGG19) was used for classification, with a total of 60,000 CMR images. Findings from this work provides insights on the importance of quality training data preparation and demonstrates the importance of data shape variability. It also provides gateway for computation performance optimization in training and validation time.
Show less
- Title
- LOW-COVERAGE GENOMES AS AN EFFECTIVE AND ECONOMICAL APPROACH FOR LEPIDOPTERAN MICROSATELLITE ISOLATION
- Creator
- Liang, Huijia
- Date
- 2020
- Description
-
This study aimed to verify that whether a low-coverage genome can work as an effective approach to isolate Lepidopteran microsatellites. As...
Show moreThis study aimed to verify that whether a low-coverage genome can work as an effective approach to isolate Lepidopteran microsatellites. As microsatellites are useful tool to study population genetics, and there are many Lepidopteran agriculture pests which can cause huge economic damages every year, additionally, Lepidoptera have abundant similar flanking sequences making it difficult to develop reliable microsatellites. However, there are not enough published genomes of Lepidoptera species. If low-coverage Lepidopteran genomes can be used to isolate reliable microsatellites, the low-coverage genomes would be an effective and economical approach for microsatellites isolation, because low-coverage genome sequencing is much cheaper and less time-consuming than the published genome sequencing.
Show less
- Title
- Improving self-supervised monocular depth estimation from videos using forward and backward consistency
- Creator
- Shen, Hui
- Date
- 2020
- Description
-
Recently, there has been a rapid development in monocular depth estimation based on self-supervised learning. However, these existing self...
Show moreRecently, there has been a rapid development in monocular depth estimation based on self-supervised learning. However, these existing self-supervised learning methods are insufficient for estimating motion objects, occlusions, and large static areas. Uncertainty or vanishing easily occurs during depth inferencing. To address this problem, the model proposed in this thesis further explores the consistency in video and builds a multi-frame model for depth estimation; secondly, by taking advantage of the optical flow, a motion mask is generated, with additional photometric loss applied for those masked regions. Experiments are carried out on the KITTI dataset. The proposed model performs better than the baseline model in quantitative results, and as seen from the depth map, the scale uncertainty and depth incomplete situations are improved in motion objects and occlusions explicitly.
Show less
- Title
- Development of validation guidelines for high pressure processing to inactivate pressure resistant and matrix-adapted Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes in treated juices
- Creator
- Rolfe, Catherine
- Date
- 2020
- Description
-
The fruit and vegetable juice industry has shown a growing trend in minimally processed juices. A frequent technology used in the functional...
Show moreThe fruit and vegetable juice industry has shown a growing trend in minimally processed juices. A frequent technology used in the functional juice division is cold pressure, which refers to the application of high pressure processing (HPP) at low temperatures for a mild treatment to inactivate foodborne pathogens instead of thermal pasteurization. HPP juice manufacturers are required to demonstrate a 5-log reduction of the pertinent microorganism to comply with FDA Juice HACCP. The effectiveness of HPP on pathogen inactivation is determinant on processing parameters, juice composition, packaging application, as well as the bacterial strains included for validation studies. Unlike thermal pasteurization, there is currently no consensus on validation study approaches for bacterial strain selection or preparation and no agreement on which HPP process parameters contribute to overall process efficacy.The purpose of this study was to develop validation guidelines for HPP inactivation and post-HPP recovery of pressure resistant and matrix-adapted Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes in juice systems. Ten strains of each microorganism were prepared in three growth conditions (neutral, cold-adapted, or acid-adapted) and assessed for barotolerance or sensitivity. Pressure resistant and sensitive strains from each were used to evaluate HPP inactivation with increasing pressure levels (200 – 600 MPa) in two juice matrices (apple and orange). A 75-day shelf-life analysis was conducted on HPP-treated juices inoculated with acid-adapted resistant strains for each pathogen and examined for inactivation and recovery. Individual strains of E. coli O157:H7, Salmonella spp., and L. monocytogenes demonstrated significant (p <0.05) differences in reduction levels in response to pressure treatment in high acid environments. E. coli O157:H7 was the most barotolerant of the three microorganism in multiple matrices. Bacterial screening resulted in identification of pressure resistant strains E. coli O157:H7 TW14359, Salmonella Cubana, and L. monocytogenes MAD328, and pressure sensitive strains E. coli O15:H7 SEA13B88, S. Anatum, and L. monocytogenes CDC. HPP inactivation in juice matrices (apple and orange) confirmed acid adaptation as the most advantageous of the growth conditions. Shelf-life analyses reached the required 5-log reduction in HPP-treated juices immediately following pressure treatment, after 24 h in cold storage, and after 4 days of cold storage for L. monocytogenes MAD328, S. Cubana, and E. coli O157:H7 TW14359, respectively. Recovery of L. monocytogenes in orange juice was observed with prolonged cold storage time. These results suggest the preferred inoculum preparation for HPP validation studies is the use of acid-adapted, pressure resistant strains. At 586 – 600 MPa, critical inactivation (5-log reduction) was achieved during post-HPP cold storage, suggesting sufficient HPP lethality is reached at elevated pressure levels with a subsequent cold holding duration.
Show less
- Title
- Sense of Community and Virtual Community Among People with Autism Spectrum Conditions
- Creator
- Rafajko, Sean I
- Date
- 2020
- Description
-
Individuals with autism spectrum conditions (ASC) face poorer quality of life (QOL) and psychological well-being. Sense of community (SOC) has...
Show moreIndividuals with autism spectrum conditions (ASC) face poorer quality of life (QOL) and psychological well-being. Sense of community (SOC) has been studied in the general population as well as in other disability populations and found to be associated with increased QOL outcomes. However, SOC has never been examined quantitatively in the ASC population. Additionally, a number of communities exist online, and there has been recent research showing that people may feel sense of virtual community (SOVC), which may be particularly important to the ASC population, as internet use is higher in the population, and people with ASC report positive experiences with online communication and relationships. The purpose of this study was to examine SOC and SOVC in the ASC population. A sample of 60 participants with ASC completed an online survey about their communities, SOC, SOVC, QOL, and psychological distress, and their results were compared with a sample of 60 general population participants (N = 120). Results indicated that people with ASC reported participating in a greater number of smaller relational communities compared to the general population sample. There were no significant differences between the ASC and general population samples on levels of SOC or SOVC, suggesting that the differential relationship of the ASC group with their communities does not reduce the experience of SOC. SOC significantly contributed to QOL but not psychological distress. Results indicated that the magnitude of the relationship between SOC and SOVC on QOL was not different between those with ASC and those in the comparisons sample. Findings from this study help frame the different ways in which people with ASC interact with their communities and inform individual and community-level interventions.
Show less
- Title
- LOW-DOSE CARDIAC SPECT USING POST-FILTERING, DEEP LEARNING, AND MOTION CORRECTION
- Creator
- Song, Chao
- Date
- 2019
- Description
-
Single photon emission computed tomography (SPECT) is an important technique in use today for the detection and evaluation of coronary artery...
Show moreSingle photon emission computed tomography (SPECT) is an important technique in use today for the detection and evaluation of coronary artery diseases. The image quality in cardiac SPECT can be adversely affected by cardiac motion and respiratory motion, both of which can lead to motion blur and non-uniform heart wall. In this thesis, we mainly investigate imaging de-noising algorithms and motion correction methods for improving the image quality in cardiac SPECT on both standard dose and reduced dose.First, we investigate a spatiotemporal post-processing approach based on a non-local means (NLM) filter for suppressing the noise in cardiac-gated SPECT images. Since in recent years low-dose studies have gained increased attention in cardiac SPECT owing to its potential radiation risk, to further improve the image quality on reduced dose, we investigate a novel de-noising method for low-dose cardiac-gated SPECT by using a three dimensional residual convolutional neural network (CNN). Furthermore, to reduce the negative effect of respiratory-binned acquisitions and assess the benefit of this approach in both standard dose and reduced dose using simulated acquisitions. Inspired by the success in respiratory correction, we investigate the potential benefit of cardiac motion correction for improving the detectability of perfusion defects. Finally, to combine the benefit of above two types of motion correction, dual-gated data acquisitions are implemented, wherein the acquired list-mode data are further binned into a number of intervals within cardiac and respiratory cycle according to the electrocardiography (ECG) signal and amplitude of the respiratory motion.
Show less
- Title
- Factor Analysis of the Neurobehavioral Symptom Inventory in Veterans with Posttraumatic Stress Disorder
- Creator
- Scimeca, Lauren
- Date
- 2020
- Description
-
The Neurobehavioral Symptom Inventory (NSI) is a widely used measure of postconcussive symptoms in veteran populations. Previous psychometric...
Show moreThe Neurobehavioral Symptom Inventory (NSI) is a widely used measure of postconcussive symptoms in veteran populations. Previous psychometric studies used samples of veterans with mild Traumatic Brain Injury (mTBI) and high rates of comorbid Posttraumatic Stress Disorder (PTSD). The present study aims to determine the best-fitting factor structure of the NSI in veterans with PTSD and to evaluate the relationship between the best-fitting factor structure and the symptom clusters of PTSD. A confirmatory factor analysis (CFA) found that 4-factors had the best overall fit in veterans with PTSD. Correlational analyses found high rates of correspondence between the cognitive and affective factors of the NSI and the alterations in cognition and mood and hyperarousal symptom clusters of PTSD. The analyses reveal that symptoms of the NSI cluster in the same way in a sample of veterans with PTSD as they do in veterans with mTBI, suggesting that lingering postconcussive symptoms in veterans with PTSD are better characterized as non-specific generalized health symptoms on the NSI.
Show less
- Title
- CONCEPTUAL COST ESTIMATION MODEL FOR BRIDGES WITH RESPECT TO ABC METHODS
- Creator
- Rajeei, Farshad
- Date
- 2020
- Description
-
As the need for renovating and repairing structurally deficient and functionally obsolete bridges is increased, employing innovative methods...
Show moreAs the need for renovating and repairing structurally deficient and functionally obsolete bridges is increased, employing innovative methods which can lead to shorter construction time, better quality, longer durability, and less life-cycle costs become more popular in transportation agencies.Developing a model that has the capability of estimating the total construction cost of ABC projects and compare them with conventional methods costs [without using these methods] will help decision-makers at DOTs in understanding and assessing the benefits and costs of ABC methods at the planning phase of a project and in return, will lead to the elaboration in the use of ABC methods versus the conventional ones. But this decision making process is complicated since the number of executed ABC projects, especially those which done by SIBC and SPMT [two superstructure replacement method] is limited and as a result; there is a lack of historical knowledge to estimate the associated cost of these methods in future projects. Factors affecting this process include but are not limited to: construction costs, user costs, quality of work, impact on traffic, the safety of road users and construction workers, and the impact on surrounding communities and businesses. The main aim of this study is to make a model to estimate additional costs of using SIBC and SPMT methods and the saving in user costs.
Show less