Search results
(1  2 of 2)
 Title
 Open Problems on Connectivity of Fibers with Positive Margins in Multidimensional Contingency Tables
 Creator
 Yoshida, Ruriko
 Date
 2010, 2010
 Description

DiaconisSturmfels developed an algorithm for sampling from conditional distributions for a statistical model of discrete exponential families...
Show moreDiaconisSturmfels developed an algorithm for sampling from conditional distributions for a statistical model of discrete exponential families, based on the algebraic theory of toric ideals. This algorithm is applied to categorical data analysis through the notion of Markov bases. Initiated with its application to Markov chain Monte Carlo approach for testing statistical fitting of the given model, many researchers have extensively studied the structure of Markov bases for models in computational algebraic statistics. In the Markov chain Monte Carlo approach for testing statistical fitting of the given model, a Markov basis is a set of moves connecting all contingency tables satisfying the given margins. Despite the computational advances, there are applied problems where one may never be able to compute a Markov basis. In general, the number of elements in a minimal Markov basis for a model can be exponentially many. Thus, it is important to compute a reduced number of moves which connect all tables instead of computing a Markov basis. In some cases, such as logistic regression, positive margins are shown to allow a set of Markov connecting moves that are much simpler than the full Markov basis. Such a set is called a Markov subbasis with assumption of positive margins. In this paper we summarize some computations of and open problems on Markov subbases for contingency tables with assumption of positive margins under specific models as well as develop algebraic methods for studying connectivity of Markov moves with margin positivity to develop Markov sampling methods for exact conditional inference in statistical models where the Markov basis is hard to compute.
Show less  Collection
 Journal of Algebraic Statistics
 Title
 Stephen Fienberg's influence on algebraic statistics, Special Volume in honor of memory of S.E.Fienberg
 Creator
 PetroviÄ‡, Sonja, Slavkovic, Aleksandra, Yoshida, Ruriko
 Date
 2019, 20190412
 Description

Stephen (Steve) E. Fienberg (19422016) was an eminent statistician, whose impact on research, education and the practice of statistics, and...
Show moreStephen (Steve) E. Fienberg (19422016) was an eminent statistician, whose impact on research, education and the practice of statistics, and many other fields is astonishing in its breadth. He was a visionary when it came to linking many different areas to address real scientific issues. He professed the importance of statistics in many disciplines, but recognized that true interdisciplinary work requires joining of the expertise across different areas, and it is in this spirit that he helped steer algebraic statistics toward becoming a thriving subject. Many of his favorite topics in the area are covered in this special issue. We are grateful to all authors for contributing to this volume to honor him and his influence on the field. During the preparation of this issue, we learned about the tragic killing of his widow, Joyce Fienberg, during the Tree of Life Synagogue massacre in Pittsburgh, PA on October 27, 2018. This issue is dedicated to their memory.
Show less  Collection
 Journal of Algebraic Statistics