An apparatus and method for controlling a yaw moment of a flight vehicle, such as an aircraft. A wing structure of the flight vehicle has a... Show moreAn apparatus and method for controlling a yaw moment of a flight vehicle, such as an aircraft. A wing structure of the flight vehicle has a first opening or actuator positioned by a first apex section of a first side of the wing, and has a second opening or actuator positioned away from or at a distance from a second apex section of a second side of the wing. The first side and the second side can each be positioned or located opposite a centerline of the wing or wing structure. A pressure source or other pressure supply device is in communication with the first opening or actuator and the second opening or actuator to which a pressurized fluid, such as air, is controlled and delivered to control or vary the yaw moment of the flight vehicle. Sponsorship: Illinois Institute of Technology United States Patent Show less
A system for producing variable amplitude pneumatic pulses, such as may be used to prevent flow separation on airfoil and diffuser surfaces to... Show moreA system for producing variable amplitude pneumatic pulses, such as may be used to prevent flow separation on airfoil and diffuser surfaces to control stalling, utilizes a source of pressurized air which is regulated and fed to parallel outlet lines. Each outlet line has a control valve therein attached to a controller for activation of the valves. The first parallel line leads to an actuator which supplies the pulsed air to a desired surface. The second parallel line leads to the atmosphere. By cycling the valves at about ninety degrees out of phase, pneumatic pulses of large amplitude are obtained with a simple device capable of being transported on the aircraft. Sponsorship: Illinois Institute of Technology United States Patent Show less
A spirometer for measuring fluid flow, particularly associated with exhalation of respiratory patients. The spirometer of this invention... Show moreA spirometer for measuring fluid flow, particularly associated with exhalation of respiratory patients. The spirometer of this invention preferably has a fluidic oscillator wherein the fluid oscillates within a chamber of the fluidic oscillator. An oscillation frequency of the fluid flow within the chamber is correlated to a flow rate. A computer is used to process input data, such as data representing frequency of the oscillatory flow within the chamber, to a flow rate passing through the spirometer. The spirometer of this invention may have no moving parts, which results in the need for only a design calibration and no periodic calibrations throughout use of the spirometer. Sponsorship: Illinois Institute of Technology United States Patent Show less
Query
(-) mods_name_creator_namePart_mt:"Williams, David R."