Search results
(1 - 1 of 1)
- Title
- ESTIMATING PM2.5 INFILTRATION FACTORS FROM REAL-TIME OPTICAL PARTICLE COUNTERS DEPLOYED IN CHICAGO HOMES BEFORE AND AFTER MECHANICAL VENTILATION RETROFITS
- Creator
- Wang, Mingyu
- Date
- 2021
- Description
-
PM2.5 are fine inhalable particles that are 2.5 micrometers or smaller in size. Indoor PM2.5 consists of outdoor PM2.5 (ambient PM2.5) that is...
Show morePM2.5 are fine inhalable particles that are 2.5 micrometers or smaller in size. Indoor PM2.5 consists of outdoor PM2.5 (ambient PM2.5) that is infiltrated into the indoor environment and indoor generated PM2.5 (non-ambient PM2.5). As people spend nearly 90% of their lifetimes indoors, with most of that time in their homes, PM2.5 exposure in homes results in severe health effects such as asthma. One strategy increasingly being used to dilute air pollutants generated indoors and improve indoor air quality (IAQ) in homes is the introduction of mechanical ventilation systems. However, mechanical ventilation systems also have the potential to introduce more ambient PM2.5 than relying on infiltration alone, although limited data exist to demonstrate the magnitude of impacts in occupied homes. The objective of this paper is to estimate the infiltration factor (Finf) of PM2.5 before and after installing mechanical ventilation systems in a subset of occupied homes. The data source utilized comes from the Breathe Easy Project, a more than 2-year-long study conducted in 40 existing homes in Chicago, IL aiming to explore the effects of three different types of mechanical ventilation system retrofits on IAQ and asthma. An automated algorithm was developed to remove indoor PM2.5 peaks in time-series data collected from optical particle counters deployed inside and outside of each home. The Finf was estimated using the resulting indoor/outdoor ratio with indoor peaks removed. Before mechanical ventilation retrofits, the weekly median Finf was 0.29 (summer median = 0.41, fall median = 0.26, winter median = 0.29, spring median = 0.30); after mechanical ventilation retrofits, the median Finf was 0.34 (winter median= 0.28, spring median = 0.45, summer median = 0.54, fall median = 0.20). Differences in Finf between pre- and post-intervention periods were not statistically significant (p = 0.23 from Wilcoxon signed rank tests). The median PM2.5 infiltration factor increased ~22% (from 0.27 to 0.33) with the installation of balanced ventilation systems with energy recovery ventilators (ERV), although differences were not statistically significant (Wilcoxon signed rank p = 0.35). The median PM2.5 infiltration factor decreased ~4% (from 0.28 to 0.27) after installing intermittent CFIS systems, which intermittently supply ventilation air through the existing central air handling units and associated filters (which were upgraded to a minimum of MERV 10 in all CFIS homes), although differences were not statistically significant (Wilcoxon signed rank p = 0.24). The median PM2.5 infiltration factor increased ~26% (from 0.35 to 0.44) with the installation of continuous exhaust-only systems, and differences were significant (Wilcoxon signed rank p = 0.04). These results suggest that the filtration mechanisms used on the CFIS and balanced systems were adequate for maintaining similar distributions of Finf values pre- and post-interventions whereas the increased delivery of outdoor air via the building envelope by exhaust-only systems significantly increased Finf following retrofits.
Show less