Search results
(1 - 2 of 2)
- Title
- Large-Signal Transient Stability and Control of Inverter-Based Resources
- Creator
- Wang, Duo
- Date
- 2024
- Description
-
Renewable generation, including solar photovoltaic (PV) systems, type 3 and 4 wind turbine generation systems (WTG), battery energy storage...
Show moreRenewable generation, including solar photovoltaic (PV) systems, type 3 and 4 wind turbine generation systems (WTG), battery energy storage systems (BESS), as well as high voltage direct current (HVDC) and flexible alternating current (FACT) transmission system devices with increasing penetration level are being connected to the bulk power systems (BPS) via power electronic (PE) converters as the interface, referred to as the inverter-based resources (IBRs) on the transmission and sub-transmission levels or distributed energy resources (DERs) located on the distribution level. The IBR is almost entirely defined by the control algorithms and found to be more prone to experiencing large disturbances due to the lack of the conventional synchronous machine (SM) intrinsic synchronous characteristics and mechanical inertia, as well as being in smaller capacity sizes. Thus, these reasons motivate this dissertation to study the large-signal transient stability and control of IBRs for reliable grid integration and rapid grid transformation. For large-signal stability analysis methods, Lyapunov-based methods are the fundamental theory used to characterize the stability issues with analytical solutions, although other non-Lyapunov methods could also be very helpful. A main difficulty hindering the widespread adoption of the Lyapunov stability analysis method is the difficulty of finding the proper Lyapunov function candidate for a higher dimensional nonlinear system. The Port-Hamiltonian (PH) nonlinear control theory is explored in this dissertation as a promising theoretical framework solution addressing this challenging issue. A PH-based tracking and robust control method is proposed to facilitate the practical application of the PH framework in IBR controls. In addition, considering the typical grid-forming (GFM) IBR control with a first-order low pass filter (LPF) block is usually involved with control saturation function for protection purposes under abnormal operating conditions with anti-windup issue in practical implementation, a PH-based bounded LPF (PH-BLPF) control is proposed to incorporate this in the large-signal PH interconnection modeling framework while preserving the robust tracking Lyapunov stability with improved transient dynamic performance and stability margin.Moreover, specific real-world transient synchronization stability issues, such as the grid voltage large fault disturbance case, are studied. In addition, to meet the recent emerging IBR grid code requirements, such as the current magnitude limitation, grid support function, and fault recovery capability of GFM-VSCs, a virtual impedance-based current-limiting GFM control with enhanced transient stability and grid support is proposed.
Show less
- Title
- Large-Signal Transient Stability and Control of Inverter-Based Resources
- Creator
- Wang, Duo
- Date
- 2024
- Description
-
Renewable generation, including solar photovoltaic (PV) systems, type 3 and 4 wind turbine generation systems (WTG), battery energy storage...
Show moreRenewable generation, including solar photovoltaic (PV) systems, type 3 and 4 wind turbine generation systems (WTG), battery energy storage systems (BESS), as well as high voltage direct current (HVDC) and flexible alternating current (FACT) transmission system devices with increasing penetration level are being connected to the bulk power systems (BPS) via power electronic (PE) converters as the interface, referred to as the inverter-based resources (IBRs) on the transmission and sub-transmission levels or distributed energy resources (DERs) located on the distribution level. The IBR is almost entirely defined by the control algorithms and found to be more prone to experiencing large disturbances due to the lack of the conventional synchronous machine (SM) intrinsic synchronous characteristics and mechanical inertia, as well as being in smaller capacity sizes. Thus, these reasons motivate this dissertation to study the large-signal transient stability and control of IBRs for reliable grid integration and rapid grid transformation. For large-signal stability analysis methods, Lyapunov-based methods are the fundamental theory used to characterize the stability issues with analytical solutions, although other non-Lyapunov methods could also be very helpful. A main difficulty hindering the widespread adoption of the Lyapunov stability analysis method is the difficulty of finding the proper Lyapunov function candidate for a higher dimensional nonlinear system. The Port-Hamiltonian (PH) nonlinear control theory is explored in this dissertation as a promising theoretical framework solution addressing this challenging issue. A PH-based tracking and robust control method is proposed to facilitate the practical application of the PH framework in IBR controls. In addition, considering the typical grid-forming (GFM) IBR control with a first-order low pass filter (LPF) block is usually involved with control saturation function for protection purposes under abnormal operating conditions with anti-windup issue in practical implementation, a PH-based bounded LPF (PH-BLPF) control is proposed to incorporate this in the large-signal PH interconnection modeling framework while preserving the robust tracking Lyapunov stability with improved transient dynamic performance and stability margin.Moreover, specific real-world transient synchronization stability issues, such as the grid voltage large fault disturbance case, are studied. In addition, to meet the recent emerging IBR grid code requirements, such as the current magnitude limitation, grid support function, and fault recovery capability of GFM-VSCs, a virtual impedance-based current-limiting GFM control with enhanced transient stability and grid support is proposed.
Show less