A modal spectrum technique was used to study coherent instability modes (both axisymmetric and azimuthal) triggered by naturally occurring... Show moreA modal spectrum technique was used to study coherent instability modes (both axisymmetric and azimuthal) triggered by naturally occurring disturbances in a circular jet. This technique was applied to a high Reynolds number (400,000) jet for both untripped (transitional) and tripped (turbulent) nozzle exit boundary layers, with both cases having a core turbulence level of 0.15%. The region up to the end of the potential core was dominated by the axisymmetric mode, with the azimuthal modes dominating further downstream. The growth of the azimuthal modes was observed closer to the nozzle exit for the jet with a transitional boundary layer. Whether for locally parallel flow or slowly diverging flow, even at low levels of acoustic forcing, the inviscid linear theory is seen to be inadequate for predicting the amplitude of the forced mode. In contrast, the energy integral approach reasonably predicts the evolution of the forced mode. Show less