Data is a non-exclusive resource and has synergistic effects. Open data sharing will enhance the utilization of big data’s value and... Show moreData is a non-exclusive resource and has synergistic effects. Open data sharing will enhance the utilization of big data’s value and tremendously boost economic growth and transparency. Data sharing platforms have emerged worldwide, but with very limited services. Security is one of the main reasons why most data are not commonly shared. This dissertation aims to tackle several security issues in building a trustworthy data sharing ecosystem. First, I reveal the privacy risks in data sharing by designing de-anonymization and privacy inference attacks. Second, I present an analysis of the relationship between the attacker's knowledge and the privacy risk of data sharing, and try quantifying and estimating the risk. Then, I propose anonymization algorithms to protect the privacy of participants in data sharing. Finally, I survey the status quo, privacy and security concerns, and opportunities in data trading. This dissertation involves various data types with a focus on graph data and speech data; it also involves various forms of data sharing including collection, publishing, query, and trading. Show less