Search results
(1 - 2 of 2)
- Title
- Effect of Stress Triaxiality and Lode Angle on Ductile Fracture
- Creator
- Nia, Mahan
- Date
- 2023
- Description
-
Although many ductile damage accumulation studies have been done in recent years, there is still insufficient research towards the development...
Show moreAlthough many ductile damage accumulation studies have been done in recent years, there is still insufficient research towards the development of ductile fracture models, mainly due to the difficulty of performing experiments under different states of multiaxial stress. The goals of this Ph.D. research are to (i) produce much-needed experimental data, (ii) investigate the performance of existing models against these data, and (iii) develop a new predictive ductile fracture model validated by experiments. The new model seeks to predict the fracture strain as a function of the stress triaxiality and normalized Lode angle. One of the prominent works in this area was done by Bai and Wierzbicki in 2008 by testing 2024-T351 aluminum alloy. They proposed an asymmetric 3D empirical fracture model with six model parameters. Thus, the Bai method was investigated alongside a new model for predicting ductile fracture. For that purpose, 2139-T8 aluminum alloy was chosen for our experimental program to evaluate these models better, and the data extracted from Bai's work was also used as an additional data set. An extensive experimental program was considered to create different stress states in the material, including tensile tests (with round smooth and four round notched and plate specimens), torsion, compression (with four smooth and two notched specimens), and shear-compression experiments (two different sizes). The specimens were longitudinally machined from a block of 2139-T8 aluminum alloy. The combined effects of two variables, stress triaxiality and normalized Lode angle, define a 3D fracture envelope for fracture strain. A parallel FE simulation (fine-tuned by the experimental results) has been performed for each experiment to evaluate the evolution of stress triaxiality and Lode angle in the gauge section of the specimens with complicated geometries. Finally, these results were used in developing two predictive fracture models. The first model is based on the Bai-Wierzbicki form of fracture. The second one is a new model that has been presented in this research. This new model is a modification of the Johnson-Cook fracture model and considers the simultaneous effects of Lode angle and stress triaxiality in fracture. The original Johnson-Cook fracture model (1984) does not consider the Lode angle effect. In the end, errors in the proposed approach to modeling ductile fracture have been compared to errors from Bai's work, resulting in the conclusions and recommendations for future studies.
Show less
- Title
- Effect of Stress Triaxiality and Lode Angle on Ductile Fracture
- Creator
- Nia, Mahan
- Date
- 2023
- Description
-
Although many ductile damage accumulation studies have been done in recent years, there is still insufficient research towards the development...
Show moreAlthough many ductile damage accumulation studies have been done in recent years, there is still insufficient research towards the development of ductile fracture models, mainly due to the difficulty of performing experiments under different states of multiaxial stress. The goals of this Ph.D. research are to (i) produce much-needed experimental data, (ii) investigate the performance of existing models against these data, and (iii) develop a new predictive ductile fracture model validated by experiments. The new model seeks to predict the fracture strain as a function of the stress triaxiality and normalized Lode angle. One of the prominent works in this area was done by Bai and Wierzbicki in 2008 by testing 2024-T351 aluminum alloy. They proposed an asymmetric 3D empirical fracture model with six model parameters. Thus, the Bai method was investigated alongside a new model for predicting ductile fracture. For that purpose, 2139-T8 aluminum alloy was chosen for our experimental program to evaluate these models better, and the data extracted from Bai's work was also used as an additional data set. An extensive experimental program was considered to create different stress states in the material, including tensile tests (with round smooth and four round notched and plate specimens), torsion, compression (with four smooth and two notched specimens), and shear-compression experiments (two different sizes). The specimens were longitudinally machined from a block of 2139-T8 aluminum alloy. The combined effects of two variables, stress triaxiality and normalized Lode angle, define a 3D fracture envelope for fracture strain. A parallel FE simulation (fine-tuned by the experimental results) has been performed for each experiment to evaluate the evolution of stress triaxiality and Lode angle in the gauge section of the specimens with complicated geometries. Finally, these results were used in developing two predictive fracture models. The first model is based on the Bai-Wierzbicki form of fracture. The second one is a new model that has been presented in this research. This new model is a modification of the Johnson-Cook fracture model and considers the simultaneous effects of Lode angle and stress triaxiality in fracture. The original Johnson-Cook fracture model (1984) does not consider the Lode angle effect. In the end, errors in the proposed approach to modeling ductile fracture have been compared to errors from Bai's work, resulting in the conclusions and recommendations for future studies.
Show less