Search results
(1 - 1 of 1)
- Title
- RADIAL MAP ASSESSMENT APPROACH FOR DEEP LEARNING DENOISED CARDIAC MAGNETIC RESONANCE RECONSTRUCTION SHARPNESS
- Creator
- Mo, Fei
- Date
- 2021
- Description
-
Deep Learning (DL) and Artificial Intelligence (AI) play important roles in the computer-aided medical diagnostics and precision medicine...
Show moreDeep Learning (DL) and Artificial Intelligence (AI) play important roles in the computer-aided medical diagnostics and precision medicine fields, capable of complementing human operators in disease diagnosis and treatment but optimizing and streamlining medical image display. While incredibly powerful, images produced via Deep Learning or Artificial Intelligence should be analyzed critically in order to be cognizant of how the algorithms are producing the new image and what the new imagine is. One such opportunity arose in the form of a unique collaborative project: the technical development of an image assessment tool that would analyze outputs between DL-based and non DL-based Magnetic Resonance Imaging reconstruction methods.More specifically, we examine the operator input dependence of the existing reference method in terms of accuracy and precision performance, and subsequently propose a new metric approach that preserves the heuristics of the intended quantification, overcomes operator dependence, and provides a relative comparative scoring approach that may normalize for angular dependence of examined images. In chapter 2 of this thesis, we provide a background description pertaining to the two imaging science principles that yielded our proposed method description and study design. First, if treated naively, the examined linear measurement approach exhibits potential bias with respect to the coordinate lattice space of the examined image. Second, the examined DL-based image reconstruction methods used in this thesis warrants an elaborate and explicit description of the measured noise and signal present in the reconstructed images. This specific reconstruction approach employs an iterative scheme with an embedded DL-based substep or filter to which we are blinded. In chapters 3 and 4 of this thesis, the imaging and DL-based image reconstruction experiments are described. These experiments employ cardiac MRI datasets from multiple clinical centers. We first outline the clinical and technical background for this approach, and then examine the quality of DL-based reconstructed image sharpness by two alternative methods: 1) by employing the gold-standard method that addresses the lattice point irregularity using a ‘re-gridding’ method, and 2) by applying our novel proposed method inspired by radial MRI k-space sampling, which exploits the mathematical properties of uniform radial sampling to yield the target voxel counts in the ‘gridded’ polar coordinate system. This new measure of voxel counts is shown to overcome the limitation due to the operator-dependence for the conventional approach. Furthermore, we propose this metric as a relative and comparative index between two alternative reconstruction methods from the same MRI k-space.
Show less