In this paper we investigate properties of algebraic varieties representing group-based phylogenetic models. We propose a method of generating... Show moreIn this paper we investigate properties of algebraic varieties representing group-based phylogenetic models. We propose a method of generating many phylogenetic invariants. We prove that we obtain all invariants for any tree for the two-state Jukes-Cantor model. We conjecture that for a large class of models our method can give all phylogenetic invariants for any tree. We show that for 3-Kimura our conjecture is equivalent to the conjecture of Sturmfels and Sullivant [22, Conjecture 2]. This, combined with the results in [22], would make it possible to determine all phylogenetic invariants for any tree for 3-Kimura model, and also other phylogenetic models. Next we give the (first) examples of non-normal varieties associated to general group-based model for an abelian group. Following Kubjas [17] we prove that for many group-based models varieties associated to trees with the same number of leaves do not have to be deformation equivalent. Show less